基础知识点汇总函数的单调性:设函数f(x)的定义域为I.如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1f(x2),则称函数y=f(x)在这个区间上是减函数。如果函数y=f(x)在某个区间上是增函数或减函数,则称函数y=f(x)在这一区间上具有严格的单调性,这一区间叫做函数y=f(x)的单调区间。函数的奇偶性:在函数y=f(x)中,如果对于函数定义域内的任意一个x.(1)若都有f(-x)=-f(x),则称函数f(x)为奇函数;(2)若都有f(-x)=f(x),则称函数f(x)为偶函数。如果函数y=f(x)在某个区间上是奇函数或者偶函数,那么称函数y=f(x)在该区间上具有奇偶性。1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与x轴交点的坐标总是(0,b)正比例函数的图像总是过原点。3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。当b=0时,y是x的正比例函数。即:y=kx(k为常数,k≠0)例证明函数在上是增函数.1.分析解决问题针对学生可能出现的问题,组织学生讨论、交流.证明:任取,设元求差1变形,断号∴∴即∴函数在上是增函数.定论2