2016-2017学年河北省邯郸市高一(下)期中数学试卷一、选择题(共12个小题,每小题5分,共60分)1.过点P(0,1)与圆(x﹣1)2+y2=4相交的所有直线中,被圆截得的弦最长的直线方程是()A.x+y﹣1=0B.x﹣y+1=0C.x=0D.y=12.已知直线l过点P(,1),圆C:x2+y2=4,则直线l与圆C的位置关系是()A.相交B.相切C.相交和相切D.相离3.执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.4.已知平面向量=(1,2),=(﹣2,m),且,则=()A.B.C.D.5.设是两个单位向量,则下列结论中正确的是()A.B.C.D.6.已知非零向量、满足向量+与向量﹣的夹角为,那么下列结论中一定成立的是()A.=B.||=||,C.⊥D.∥7.执行如图所示的程序框图,若输入如下四个函数:①f(x)=sinx,②f(x)=cosx,③f(x)=,④f(x)=x2,则输出的函数是()A.f(x)=sinxB.f(x)=cosxC.f(x)=D.f(x)=x28.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象如图所示,则f(0)的值为()A.1B.0C.D.9.将函数y=sin(2x+φ)的图象沿x轴向左平移个单位后,得到一个关于y轴对称的图象,则φ的一个可能取值为()A.B.C.﹣D.﹣10.在△ABC中,AB=5,BC=2,∠B=60°,则•的值为()A.B.5C.D.﹣511.在△ABC中,点P是AB上一点,且,Q是BC中点,AQ与CP交点为M,又,则t=()A.B.C.D.12.设O在△ABC的内部,且,△ABC的面积与△AOC的面积之比为()A.3:1B.4:1C.5:1D.6:1二、填空题(共4个小题,每小题5分,共20分)13.函数f(x)=sin(﹣),x∈R的最小正周期为.14.如果角θ的终边经过点(﹣,),则sinθ=.15.已知角α和角β的终边关于直线y=x对称,且β=﹣,则sinα=.16.函数f(x)=3sin(2x﹣)的图象为C,如下结论中正确的是①图象C关于直线x=π对称;②图象C关于点(,0)对称;③函数即f(x)在区间(﹣,)内是增函数;④由y=3sin2x的图角向右平移个单位长度可以得到图象C.三、解答题(共6个小题,共70分)17.求圆心在直线3x+y﹣5=0上,并且经过原点和点(4,0)的圆的方程.18.在平面直角坐标系中,已知向量=(﹣1,2),又点A(8,0),B(﹣8,t),C(8sinθ,t).(I)若⊥求向量的坐标;(Ⅱ)若向量与向量共线,当tsinθ取最大值时,求.19.已知平行四边形ABCD中,=,=,M为AB中点,N为BD靠近B的三等分点.(1)用基底,表示向量,;(2)求证:M、N、C三点共线.并证明:CM=3MN.20.设A,B,C,D为平面内的四点,且A(1,3),B(2,﹣2),C(4,1).(1)若=,求D点的坐标;(2)设向量=,=,若k﹣与+3平行,求实数k的值.21.已知f(α)=.(1)化简f(α);(2)若α是第三象限角,且cos(α﹣)=,求f(α)的值.22.已知||=,||=2,与的夹角为30°,求|+|,|﹣|.2016-2017学年河北省邯郸市临漳一中高一(下)期中数学试卷参考答案与试题解析一、选择题(共12个小题,每小题5分,共60分)1.过点P(0,1)与圆(x﹣1)2+y2=4相交的所有直线中,被圆截得的弦最长的直线方程是()A.x+y﹣1=0B.x﹣y+1=0C.x=0D.y=1【考点】J8:直线与圆相交的性质.【分析】最长的弦是直径,根据圆的方程可得圆心坐标,再根据直线过点P(0,1),由截距式求得最长弦所在的直线方程.【解答】解:最长的弦是直径,根据圆的方程(x﹣1)2+y2=4可得圆心坐标为(1,0),再根据直线过点P(0,1),由截距式求得最长弦所在的直线方程为+=1,x+y﹣1=0,故选:A.2.已知直线l过点P(,1),圆C:x2+y2=4,则直线l与圆C的位置关系是()A.相交B.相切C.相交和相切D.相离【考点】J5:点与圆的位置关系.【分析】根据直线l过点P(,1),而点P在圆C:x2+y2=4上,可得直线和圆的位置关系.【解答】解: 直线l过点P(,1),而点P在圆C:x2+y2=4上,故直线l和圆相交或相切,故选:C.3.执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【考点】EF:程序框图.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+...