电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 专题15 导数与函数的极值、最值(含解析)-人教版高三全册数学试题VIP免费

高考数学一轮复习 专题15 导数与函数的极值、最值(含解析)-人教版高三全册数学试题_第1页
1/39
高考数学一轮复习 专题15 导数与函数的极值、最值(含解析)-人教版高三全册数学试题_第2页
2/39
高考数学一轮复习 专题15 导数与函数的极值、最值(含解析)-人教版高三全册数学试题_第3页
3/39
专题15导数与函数的极值、最值最新考纲1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).3.会利用导数解决某些实际问题(生活中的优化问题).重点难点突破【题型一】用导数求解函数极值问题命题点1根据函数图象判断极值【典型例题】函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极值点()A.1个B.2个C.3个D.4个【解答】解:从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,根据极值点的定义可知,导函数在某点处值为0,左右两侧异号的点为极值点,由图可知,在(a,b)内只有3个极值点.故选:C.【再练一题】已知函数f(x)的导函数f′(x)的图象如图所示,那么()A.﹣1是函数f(x)的极小值点B.1是函数f(x)的极大值点C.2是函数f(x)的极大值点D.函数f(x)有两个极值点【解答】解:根据函数f(x)的导函数f′(x)的图象可知f′(﹣1)=0,f′(2)=0但当x<﹣1时,f′(x)>0,﹣1<x<2时,f′(x)>0,x>2时,f′(x)<0∴﹣1不是极值点,2是函数f(x)的极大值点故选:C.命题点2求函数的极值【典型例题】设f(x)=x3x2﹣2x+5(Ⅰ)求函数f(x)的单调区间.(Ⅱ)求极值点与极值.【解答】解:(I)f(x)=x3x2﹣2x+5,f′(x)=3x2﹣x﹣2,令f′(x)>0即3x2﹣x﹣2>0解得x∈(﹣∞,)∪(1,+∞)令f′(x)<0即3x2﹣x﹣2<0解得x∈(,1),故函数在,(1,+∞)上为单调递增区间,在上为单调递减区间.(II)由f′(x)=0,即3x2﹣x﹣2=0解得x或x=1,当x变化时,f′(x),f(x)的变化如下表:x(﹣∞,)(,1)1(1,+∞)f′(x)+0﹣0+f(x)↑极大值↓极小值↑∴当x=1时,f(x)取得极小值,当x时,f(x)取得极大值.【再练一题】已知函数f(x)=(x2﹣mx﹣m)ex+2m(m>﹣2,e是自然对数的底数)有极小值0,则其极大值是()A.4e﹣2或(4+ln2)e﹣2+2ln2B.4e﹣2或(4+ln2)e2+2ln2C.4e﹣2或(4+ln2)e﹣2﹣2ln2D.4e﹣2或(4+ln2)e2﹣2ln2【解答】解:由题意知,f′(x)=[x2+(2﹣m)x﹣2m]ex=(x+2)(x﹣m)ex.由f′(x)=0得,x1=﹣2,x2=m,因为m>﹣2,所以函数f(x)在区间(﹣∞m﹣2)和(m,+∞)内单调递增,在区间(﹣2,m)内单调递减.于是函数f(x)的极小值为f(m)=0,即x2﹣(m2﹣m2﹣m)ex+2m=0,m(2﹣ex)=0,解得m=0或m=ln2,当m=0时,f(x)的极大值为f(﹣2)=4e﹣2.当m=ln2时,f(x)的极大值为f(﹣2)=(4+ln2)e﹣2+2ln2.故选:A.命题点3根据极值求参数【典型例题】已知函数在区间(1,+∞)上有极小值无极大值,则实数a的取值范围()A.B.C.D.【解答】解: 函数,∴f'(x)=x2+2ax﹣2, 函数在区间(1,+∞)上有极小值无极大值,∴f'(x)=x2+2ax﹣2=0在区间(1,+∞)上有1个实根,(﹣∞,1]上有1个根.,解得a.故选:A.【再练一题】已知x函数f(x)=xln(ax)+1的极值点,则a=()A.B.1C.D.2【解答】解:函数f(x)=xln(ax)+1,可得f′(x)=ln(ax)+1,已知x函数f(x)=xln(ax)+1的极值点,可得:ln(a)+1=0,解得a=1,经验证a=1时,x函数f(x)=xln(ax)+1的极值点,故选:B.思维升华函数极值的两类热点问题(1)求函数f(x)极值的一般解题步骤①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.(2)根据函数极值情况求参数的两个要领①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.②验证:求解后验证根的合理性.【题型二】用导数求函数的最值【典型例题】函数f(x)=ex﹣2x的最小值为.【解答】解:f′(x)=ex﹣2,令f′(x)=ex﹣2=0,解得x=ln2.可得:函数f(...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 专题15 导数与函数的极值、最值(含解析)-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部