2015年山东省济南市高考数学二模试卷(文科)一、选择题:本大题共10个小题,每小题5分,共50分.每小题给出的四个选项中只有一项是符合题目要求的.1.已知i是虚数单位,若复数z满足z=,则z的共轭复数为()A.﹣3+4iB.﹣3﹣4iC.3+4iD.3﹣4i2.设集合U=R,A={x|y=ln(1﹣x)},B={x|x2﹣3x≥0},则A∩∁UB=()A.{x|0<x<1}B.{x|1<x<3}C.{x|0<x<3}D.{x|x<1}3.已知点M(1,1),N(4,﹣3),则与向量共线的单位向量为()A.(,﹣)B.(﹣,)C.(,﹣)或(﹣,)D.(,﹣)或(﹣,)4.已知命题p:对于∀x∈R,恒有2x+2﹣x≥2成立,命题q:奇函数f(x)的图象必过原点.则下列结论正确的是()A.p∧q为真B.(¬p)∨q为真C.p∧(¬q)为真D.¬p为真5.已知f(x)是定义在R上的周期为2的奇函数,当x∈(0,1)时,f(x)=3x﹣1,则f()=()A.+1B.﹣+1C.﹣1D.﹣﹣16.执行如图所示的程序框图,若输入k的值为2,则输出的i值为()A.2B.3C.4D.517.已知正实数m,n满足m+n=1,且使取得最小值.若曲线y=xa过点P(,),则a的值为()A.﹣1B.C.2D.38.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为V1.直径为6的球的体积为V2,则V1:V2=()A.1:2B.2:27C.1:3D.4:279.已知点F1,F2是双曲线﹣=1(a>0,b>0)的左、右两焦点,若双曲线左支上存在点P与点F2关于直线y=x对称,则双曲线的离心率为()A.B.C.2D.10.已知函数f(x)=x3ax2+bx+c在x1处取得极大值,在x2处取得极小值,满足x1∈(﹣1,0),x2∈(0,1),则的取值范围是()A.(0,2)B.(1,3)C.[0,3]D.[1,3]二、填空题:本大题共5个小题,每小题5分,共25分.11.某班有学生55人,现将所有学生按1,2,3,…,55随机编号.若采用系统抽样的方法抽取一个容量为5的样本,已知编号为6,a,28,b,50号学生在样本中,则a+b=.12.函数f(x)=log2(4﹣x2)的值域为.13.如图所示,点P是函数y=2sin(ωx+φ)(x∈R,ω>0)图象的最高点,M、N是图象与x轴的交点,若=0,则ω=.214.已知圆C1:(x+1)2+(y﹣1)2=1,圆C2与圆C1关于直线x﹣y﹣1=0对称,则圆C2的方程为.15.定义f(x)={x}({x}表示不小于x的最小整数)为“取上整函数”,例如{1.2}=2,{4}=4.“取上整函数”在现实生活中有着广泛的应用,诸如停车收费,出租车收费等都是按照“取上整函数”进行计费的.以下关于“取上整函数”的性质是真命题的序号是(请写出所有真命题的序号).①f(2x)=2f(x);②若f(x)=f(y)则x﹣y<1;③任意x,y∈R,f(x+y)≤f(x)+f(y);④;⑤函数f(x)为奇函数.三、解答题:本大题共6小题,共75分.16.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(2a﹣c)cosB.(Ⅰ)求角B的大小;(Ⅱ)若a,b,c成等差数列,且b=3,试求△ABC的面积.17.济南天下第一泉风景区为了做好宣传工作,准备在A和B两所大学分别招募8名和12名志愿者,将这20名志愿者的身高编成如右茎叶图(单位:cm).若身高在175cm以上(包括175cm)定义为“高精灵”,身高在175cm以下(不包括175cm)定义为“帅精灵”.已知A大学志愿者的身高的平均数为176cm,B大学志愿者的身高的中位数为168cm.(Ⅰ)求x,y的值;(Ⅱ)如果用分层抽样的方法从“高精灵”和“帅精灵”中抽取5人,再从这5人中选2人.求至少有一人为“高精灵”的概率.18.如图,四边形ABCD是菱形,DE⊥DC,平面DEC⊥平面ABCD.(Ⅰ)求证:AC⊥平面BDE;3(Ⅱ)若AF∥DE,AF=DE,点M在线段BD上,且DM=BD,求证:AM∥平面BEF.19.已知等差数列{an}满足,a1+a2+a3=9,a2+a8=18.数列{bn}的前n和为Sn,且满足Sn=2bn﹣2.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)数列{cn}满足,求数列{cn}的前n和Tn.20.已知椭圆C:=1(a>b>0)的一个顶点恰好是抛物线x2=4y的焦点,且离心率为e=.(Ⅰ)求椭圆C的方程;(Ⅱ)设过原点的直线与椭圆C交于A,B两点,过椭圆C的右焦点作直线l∥AB交椭圆C于M,N两点.试问是否为定值,若为定值,请求出这个定值;若不是定值,请说明理由.21.已知函数f(x)=x+...