课时作业(二十一)坐标系与参数方程1.(2017·郑州市第二次质量预测)在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:ρsin=(ρ≥0,0≤θ<2π).(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O的公共点的极坐标.解析:(1)圆O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,故圆O的直角坐标方程为:x2+y2=x+y,即x2+y2-x-y=0,直线l:ρsin=,即ρsinθ-ρcosθ=1,则直线l的直角坐标方程为:y-x=1,即x-y+1=0.(2)由得,故直线l与圆O公共点的一个极坐标为.2.(2017·江苏卷)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.解析:直线l的普通方程为x-2y+8=0.因为点P在曲线C上,设P(2s2,2s),从而点P到直线l的距离d==.当s=时,dmin=.因此当点P的坐标为(4,4)时,曲线C上的点P到直线l的距离取到最小值.3.在平面直角坐标系xOy中,以O为极点,x轴非负半轴为极轴建立坐标系,已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为(t为参数),两曲线相交于M,N两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若P(-2,-4),求|PM|+|PN|的值.解析:(1)曲线C的直角坐标方程为y2=4x,直线l的普通方程为x-y-2=0.(2)直线l的参数方程为(t为参数),代入y2=4x,得到t2-12t+48=0,设M,N对应的参数分别为t1,t2,则t1+t2=12,t1t2=48>0,所以|PM|+|PN|=|t1+t2|=12.4.(2016·全国卷甲)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|=,求l的斜率.解析:(1)由x=ρcosθ,y=ρsinθ可得圆C的极坐标方程为ρ2+12ρcosθ+11=0.(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+12ρcosα+11=0,于是ρ1+ρ2=-12cosα,ρ1ρ2=11.|AB|=|ρ1-ρ2|==.由|AB|=得cos2α=,tanα=±.所以l的斜率为或-.5.(2017·全国卷Ⅱ)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为(t为参数),曲线C1的方程为ρ(ρ-4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.解析:(1)根据题意,得曲线C1的直角坐标方程为x2+y2-4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得代入x2+y2-4y=12,得点Q的轨迹C2的直角坐标方程为(x-3)2+(y-1)2=4,(2)直线l的直角坐标方程为y=ax,根据题意,得圆心(3,1)到直线的距离d≤=1,即≤1,解得0≤a≤.∴实数a的取值范围为.6.(2017·全国卷Ⅲ)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)-=0,M为l3与C的交点,求M的极径.解析:(1)消去参数t得l1的普通方程l1:y=k(x-2);消去参数m得l2的普通方程l2:y=(x+2).设P(x,y),由题设得消去k得x2-y2=4(y≠0),所以C的普通方程为x2-y2=4(y≠0).(2)C的极坐标方程为ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π),联立得cosθ-sinθ=2(cosθ+sinθ).故tanθ=-,从而cos2θ=,sin2θ=.代入ρ2(cos2θ-sin2θ)=4得ρ2=5,所以交点M的极径为.