课时作业3导数的几何意义知识点一导数的几何意义1.下列说法正确的是()A.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处就没有切线B.若曲线y=f(x)在点(x0,f(x0))处有切线,则f′(x0)必存在C.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处的切线斜率不存在D.若曲线y=f(x)在点(x0,f(x0))处没有切线,则f′(x0)有可能存在答案C解析k=f′(x0),所以f′(x0)不存在只说明曲线在该点的切线斜率不存在,而当斜率不存在时,切线方程也可能存在,其切线方程为x=x0.2.已知曲线y=f(x)在x=5处的切线方程是y=-x+8,则f(5)及f′(5)分别为()A.3,3B.3,-1C.-1,3D.-1,-1答案B解析由题意得f(5)=-5+8=3,f′(5)=-1.知识点二导函数的概念3.函数在某一点的导数是()A.在该点的函数的改变量与自变量的改变量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率答案C解析根据函数在一点处的导数的定义,可知选C.知识点三求曲线在某点处的切线方程4.已知函数y=f(x)的图象如图所示,则f′(xA)与f′(xB)的大小关系是()A.f′(xA)>f′(xB)B.f′(xA)