天门市2016-2017学年度第一学期期末考试试题高二数学(理科)全卷满分150分,考试时间120分钟。一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.“”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.已知,若直线AB的斜率为2,则x的值为A.-1B.2C.-1或2D.-23.已知三条直线a、b、c和平面,下列结论正确的是A.若a//,b//,则a//bB.若,则a//bC.若,b//,则a//bD.,则a//b4.若直线与圆相切,则m的值为A.0或2B.2C.D.无解5.已知实数满足关系,则的取值范围是A.B.C.D.6.如图,四边形ABCD是圆柱的轴截面,E是底面圆周上异于A、B的一点,则下面结论中错误的是A.B.C.D.7.直线恒过定点,则此点是A.(1,2)B.(2,1)C.(1,-2)D.(-2,1)8.若命题“,使得”为假命题,则实数m的取值范围是A.[2,6]B.[-6,-2]C.(2,6)D.(-6,-2)9.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为1A.2,B.,2C.4,2D.2,410.已知抛物线的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若,则等于A.B.3C.D.211.如图所示,在空间直角坐标系中有直三棱柱,,则直线与直线夹角的余弦值为A.B.C.D.12.已知直角坐标平面上的动点到定点的距离比它到轴的距离多1,记点的轨迹为曲线,则直线与曲线的交点的个数为A.0个B.1个C.2个D.3个二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡上对应题号后的横线上)13.在正方体中,若过A、C、三点的平面与底面的交线为l,则l与AC的位置关系是▲.14.已知直线经过点P(1,2),且与直线平行,则该直线方程为▲.15.若正四棱锥的底面边长为cm,体积为4cm3,则它的侧面与底面所成的二面角的大小为▲.16.双曲线一条渐近线的倾斜角为,离心率为e,则的最小值为▲.2三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤。把答案填在答题卡上对应题号指定框内。17.(本小题满分10分)已知:如图,空间四边形ABCD中,E,F分别是AB,AD的中点.求证:EF//平面BCD.18.(本小题满分12分)自圆上的点A(2,0)引此圆的弦AB,求弦AB的中点轨迹方程.19.(本小题满分12分)有一椭圆形溜冰场,长轴长100m,短轴长60m.现要在这溜冰场上划定一个各顶点都在溜冰场边界上的矩形区域,且使这个区域的面积最大,应把这个矩形的顶点定位在何处?这时矩形的周长是多少?20.(本小题满分12分)如图,已知四边形ABCD是矩形,AD=4,AB=2,E、F分别是线段AB、BC的中点,PA⊥面ABCD.(Ⅰ)证明PF⊥FD;(Ⅱ)在PA上找一点G,使得EG//平面PFD.21.(本小题满分12分)如图,,,,,点A在直线l上的射影为,点B在l上的射影为.已知,,,求:(Ⅰ)直线AB分别与平面所成角的大小;(Ⅱ)二面角的余弦值.322.(本小题满分12分)在直角坐标系中,△ABC的两个顶点C,A的坐标分别为(,0),(,0),三个内角A,B,C满足.(Ⅰ)求顶点B的轨迹方程;(Ⅱ)过顶点C作倾斜角为的直线与顶点B的轨迹交于P,Q两点,当时,求△APQ面积的最大值.4天门市2016—2017学年度第一学期期末考试高二数学(理科)参考答案与评分标准一、选择题:(1—5)BBDBD;(6—10)CDADB;(11—12)AD二、填空题:13.平行;14.;15.30o;16.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤。把答案填在答题卡上对应题号指定框内。17.(本小题满分10分)证明:连接BD,因为AE=EB,AF=FD,所以EF//BD(三角形中位线的性质)……………………5分因为平面BCD,平面BCD,由直线与平面平行的判定定理得EF//平面BCD…………………………10分18.(本小题满分12分)解:设AB的中点P(x,y),B(,),则有,且,,……………………………………3分所以,所以,即……………………………………8分当A、B重合时,P点与A点重合,不合题意,………………………………10分所以所求轨迹方程为………………………………………12分19.(本小题满分12分)解:分别以椭圆的...