电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第二章 圆锥曲线及方程 第8课时 抛物线的简单几何性质同步测试 新人教A版选修1-1-新人教A版高二选修1-1数学试题VIP免费

高中数学 第二章 圆锥曲线及方程 第8课时 抛物线的简单几何性质同步测试 新人教A版选修1-1-新人教A版高二选修1-1数学试题_第1页
1/5
高中数学 第二章 圆锥曲线及方程 第8课时 抛物线的简单几何性质同步测试 新人教A版选修1-1-新人教A版高二选修1-1数学试题_第2页
2/5
高中数学 第二章 圆锥曲线及方程 第8课时 抛物线的简单几何性质同步测试 新人教A版选修1-1-新人教A版高二选修1-1数学试题_第3页
3/5
第8课时抛物线的简单几何性质基础达标(水平一)1.设M(x0,y0)为抛物线C:x2=8y上一点,点F为抛物线C的焦点,以F为圆心、|FM|为半径的圆与抛物线C的准线相交于不同两点,则y0的取值范围是().A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)【解析】圆心到抛物线准线的距离为p=4,根据题意,只要满足|FM|>4即可.由抛物线定义知,|FM|=y0+2.由y0+2>4,解得y0>2,故y0的取值范围是(2,+∞).【答案】C2.探照灯反光镜的纵断面是抛物线的一部分,光源在抛物线的焦点处,已知灯口直径是60cm,灯深40cm,则光源到反光镜顶点的距离是().A.11.25cmB.5.625cmC.20cmD.10cm【解析】如图,建立平面直角坐标系,设抛物线方程为y2=2px(p>0),则点A(40,30).∴302=2p·40,∴p=,∴y2=x.∴光源到反光镜顶点的距离为=×==5.625(cm).【答案】B3.抛物线y2=2x的焦点为F,其准线经过双曲线-=1(a>0,b>0)的左顶点,点M为这两条曲线的一个交点,且|MF|=2,则双曲线的离心率为().A.B.2C.D.【解析】点F,准线l:x=-,由题意知a=.由抛物线的定义知,xM-=2,∴xM=,1∴=3. 点(xM,yM)在双曲线上,∴-=1,∴b2=,∴c2=a2+b2=,∴e2==×4=,∴e=.【答案】A4.已知点O为坐标原点,点F为抛物线y2=4x的焦点,点A是抛物线上一点,若·=-4,则点A的坐标是().A.(1,2)B.(4,4)C.(1,2)或(1,-2)D.(4,4)或(4,-4)【解析】因为抛物线的焦点为F(1,0),设点A,则=,=.由·=-4,得y0=±2,所以点A的坐标是(1,2)或(1,-2).【答案】C5.对标准形式的抛物线,给出下列条件:①焦点在y轴上;②焦点在x轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④由原点向过焦点的某直线作垂线,垂足坐标为(2,1).其中满足抛物线方程y2=10x的是.(要求填写适合条件的序号)【解析】抛物线y2=10x的焦点在x轴上,①不满足,②满足;设M(1,y0)是抛物线y2=10x上的一点,F为抛物线的焦点,则|MF|=1+=1+=≠6,所以③不满足;由于抛物线y2=10x的焦点为,过该焦点的直线方程为y=k,若由原点向该直线作垂线,垂足坐标为(2,1)时,则k=-2,此时存在,所以④满足.【答案】②④6.设过点P(-2,4)且倾斜角为135°的直线l与抛物线C:y2=2px(p>0)相交于A,B两点,若|PA|,|AB|,|PB|成等比数列,则抛物线C的方程为.【解析】直线l的方程为y=-x+2,联立y=-x+2和y2=2px,消去x,得y2+2py-4p=0.设点A(x1,y1),B(x2,y2),则y1+y2=-2p,y1y2=-4p.由P,A,B三点共线,且|PA|,|AB|,|PB|成等比数列,则|y1-4|,|y1-y2|,|y2-4|也成等比数列,得|(y1-4)(y2-4)|=|y1-y2|2≠0,2则|y1y2-4(y1+y2)+16|=(y1+y2)2-4y1y2,且y1≠y2,即|p+4|=p2+4p,且Δ=(2p)2-4(-4p)=4p2+16p>0,解得p=1.所求抛物线的方程为y2=2x.【答案】y2=2x7.在平面直角坐标系中,已知点A(0,4),B(0,-2),动点P(x,y)满足·-y2+8=0.(1)求动点P的轨迹方程;(2)设(1)中所求的轨迹与直线y=x+2交于C,D两点,求证:OC⊥OD(O为坐标原点).【解析】(1)由题意,可知=(-x,4-y),=(-x,-2-y),∴x2+(4-y)(-2-y)-y2+8=0,整理得x2=2y,∴动点P的轨迹方程为x2=2y.(2)由整理得x2-2x-4=0,∴x1+x2=2,x1x2=-4. kOC·kOD=·====-1,∴OC⊥OD.拓展提升(水平二)8.已知点M在抛物线y2=6x上,N为抛物线的准线l上的一点,F为抛物线的焦点,若=,则直线MN的斜率为().A.±B.±1C.±2D.±【解析】由题设可知点M,N,F三点共线,且点F是线段MN的中点,不妨设点M(x0,y0)(y0<0),N(t>0),F,则x0=,y0=-t.又点M(x0,y0)在抛物线上,所以=6x0,即y0=-3,所以t=3.故直线MN的斜率k=-.设y0>0,则t<0,同理可得MN的斜率k=,故选D.【答案】D39.已知点A(1,2)在抛物线C:y2=4x上,过点A作两条直线分别交抛物线于D,E两点,直线AD,AE的斜率分别为kAD,kAE,若直线DE过点P(-1,-2),则kAD·kAE=().A.4B.3C.2D.1【解析】设点D(x1,y1),E(x2,y2),则kAD=,kAE=,∴kAD·kAE=·=,①设直线DE:y+2=k(x+1),联立方程消去x,可得ky2-4y+4k-8=0.∴y1+y2=,y1y2=.∴x1+x2==,x1x2==,代入①可得kAD·kAE==2.【答案】C10.已知南北方向有条公路L,A地在公路正东2km处,B地在A地北偏东60°方向2km处,河流沿岸曲线PQ上任意一点到公路L和到A地距离相等.现要在曲线PQ上某处建一座码头,向A,B两地运货物.经测算,从M到A,B修建公路的费用都为a万元/km,那么,修建这两条公路的总费用最低是万元.【解析】如图所示,由题意知,曲线PQ是以A为焦点、L为...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第二章 圆锥曲线及方程 第8课时 抛物线的简单几何性质同步测试 新人教A版选修1-1-新人教A版高二选修1-1数学试题

星河书苑+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部