3.1导数课后导练基础达标1.一质点运动的方程为s=5-3t2,则在一段时间[1,1+Δt]内相应的平均速度为()A.3Δt+6B.-3Δt+6C.3Δt-6D.-3Δt-6答案:D2.在曲线y=x2+1的图象上取一点(1,2)及附近一点(1+Δx,2+Δy),则xy为()A.Δx+x1+2B.Δx-x1-2C.Δx+2D.2+Δx-x1解析:xy即为(1,2)与(1+Δx,2+Δy)两点连线的斜率.答案:C3.设f(x)在x处可导,则hhxfxfh2)()(lim0等于()A.2f′(x)B.21f′(x)C.f′(x)D.4f′(x)答案:B4.设f(x)为可导函数,且满足xxffx2)21()1(lim0=-1,则过曲线y=f(x)上点(1,f(1))处的切线斜率为()A.2B.-1C.1D.-2解析:利用定义.答案:B5.将半径为R的球加热,若球的半径增加ΔR,则球的体积增加值Δy约等于()A.24πR3ΔRB.4πR2ΔRC.4πR2D.4πRΔR解析:利用Δy=.π34)(3π433RRR答案:B6.若f′(x0)=2,则kxfkxfk2)()(lim000=___________.解析:利用导数的定义:f′(x0)=,)(]]([lim000kxfkxfk1.1)(21)()(lim21])()(21[lim2)()(lim0000000000xfkxfkxfkxfkxfkxfkxfkkk答案:-17.已知P(1,2)为函数f(x)=1+x3图象上一点,以P点为切点的切线的斜率为___________.解析:k=f′(1)=xxx2)1(1lim30=0limx(Δx2+3Δx+3)=3.答案:38.某汽车启动阶段的路程函数为s(t)=2t3-5t2,则t=2秒时,汽车的瞬时速度是___________.解析:汽车在t=2秒时的瞬时速度为s(t)在t=2处的导数,利用导数的定义即可.答案:49.已知y=f(x)=x2,求y′及y′|x=1.解:∵Δy=f(x+Δx)-f(x).11)1(|.·2·2)(··2lim)(··)(2lim··)(2limlim·)(222231230000fyxxxxxxxxxxxxxxxxxxxxxxxxxxxyyxxxxxxxxxxxxxx10.抛物线y=x2在哪一点处的切线平行于直线y=4x-5?解:,2)(limlim2200xxxxxxyxx令2x=4,x=2,即在点(2,4)处的切线平行于直线y=4x-5.2综合运用11.设函数f(x)在x=a处可导,求下列各极限.(1);2)()3(lim0xxafxafx(2).)()(lim20hafhafh解:(1)原式).(2)(21)(23)()(lim213)()3(lim232)()()()3(lim000afafafxafxafxafxafxxafafafxafxxx(2)原式=hhafhafh·)()(lim220.00·)(lim·)()(lim0220hfhafhafhh12.已知函数f(x)及f(x)的导函数f′(x),求[f(x)+3]2的导数.解:{[f(x)+3]2}′).(·]3)([2)]()([lim·)6)(2()]()([·]6)()([lim]3)(3)([·]3)(3)([lim]3)([]3)([lim0020220xfxfxxfxxfxfxxfxxfxfxxfxxfxxfxfxxfxxfxxfxxxx拓展探究13.试求过P(3,5)且与曲线y=x2相切的切线方程.解:.2)(limlim00xxxxxyyxx设所求切线的切点为A(x0,y0).∵点A在曲线y=x2上,∴y0=x20.又∵A是切点,∴过点A的切线的斜率y′|x=x0=2x0.3∵所求的切线过P(3,5)和A(x0,y0)两点,∴其斜率又为,353502000xxxy∴2x0=,35020xx解之得x0=1或x0=5.从而切点A的坐标为(1,1)或(5,25).当切点为(1,1)时,切线的斜率为k1=2x0=2;当切点为(5,25)时,切线的斜率为k2=2x0=10.∴所求的切线有两条,方程分别为y-1=2(x-1)和y-25=10(x-5),即y=2x-1和y=10x-25.4