电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学 考纲解读与热点难点突破 专题04 导数及其应用(热点难点突破)文(含解析)-人教版高三全册数学试题VIP免费

高考数学 考纲解读与热点难点突破 专题04 导数及其应用(热点难点突破)文(含解析)-人教版高三全册数学试题_第1页
1/14
高考数学 考纲解读与热点难点突破 专题04 导数及其应用(热点难点突破)文(含解析)-人教版高三全册数学试题_第2页
2/14
高考数学 考纲解读与热点难点突破 专题04 导数及其应用(热点难点突破)文(含解析)-人教版高三全册数学试题_第3页
3/14
导数及其应用1.设函数y=xsinx+cosx的图象在点处切线的斜率为g(t),则函数y=g(t)的图象一部分可以是()答案A2.已知函数f(x)=+k,若x=1是函数f(x)的唯一极值点,则实数k的取值范围是()A.B.C.D.答案A解析由函数f(x)=+k,可得f′(x)=+k=(x>0), f(x)有唯一极值点x=1,∴f′(x)=0有唯一根x=1,∴-k=0无根或有且仅有一个根为x=1,设g(x)=,则g′(x)=,由g′(x)>0得,g(x)在[1,+∞)上单调递增,由g′(x)<0得,g(x)在(0,1)上单调递减,∴g(x)min=g(1)=e,∴k≤e,即实数k的取值范围是.3.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)0,由y=x-lnx,得y′=1-,则曲线y=x-lnx在点P(m,n)处的切线的方程为y-m+lnm=(x-m),即y=x+1-lnm.由y=ax3+x+1,得y′=3ax2+1,则曲线y=ax3+x+1在点P(m,n)处的切线的方程为y-am3-m-1=(3am2+1)(x-m),即y=(3am2+1)x-2am3+1,所以解得6.设函数y=f(x)的导函数为f′(x),若y=f(x)的图象在点P(1,f(1))处的切线方程为x-y+2=0,则f(1)+f′(1)等于()A.4B.3C.2D.1答案A解析依题意有f′(1)=1,1-f(1)+2=0,即f(1)=3,所以f(1)+f′(1)=4.7.已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则的值为()A.-B.-2C.-2或-D.2或-答案A解析由题意知f′(x)=3x2+2ax+b,f′(1)=0,f(1)=10,即解得或经检验满足题意,故=-.8.曲线f(x)=在x=0处的切线方程为()A.x-y-1=0B.x+y+1=0C.2x-y-1=0D.2x+y+1=0解析因为f′(x)=,所以f′(0)=-2,故在x=0处的切线方程为2x+y+1=0,故选D.答案D9.曲线f(x)=x3+x-2在p0处的切线平行于直线y=4x-1,则p0点的坐标为()A.(1,0)B.(2,8)C.(1,0)和(-1,-4)D.(2,8)和(-1,-4)解析设p0(x0,y0),则3x+1=4,所以x0=±1,所以p0点的坐标为(1,0)和(-1,-4).故选C.答案C10.如图,直线y=2x与抛物线y=3-x2所围成的阴影部分的面积是()A.B.2C.2-D.解析S=(3-x2-2x)dx=,故选D.答案D11.设a=cosxdx,b=sinxdx,下列关系式成立的是()A.a>bB.a+b<1C.asin=,又cos1>cos=,∴-cos1<-,b=1-cos1<1-=,∴a>b,选A.答案A12.如果f′(x)是二次函数,且f′(x)的图象开口向上,顶点坐标为(1,),那么曲线y=f(x)上任一点的切线的倾斜角α的取值范围是()A.B.C.D.解析由题意可设f′(x)=a(x-1)2+(a>0),即函数切线的斜率为k=f′(x)=a(x-1)2+≥,即tanα≥,∴≤α<,选B.答案B13.设点P在曲线y=ex上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为()A.1-ln2B.(1-ln2)C.1+ln2D.(1+ln2)解析函数y=ex和函数y=ln(2x)互为反函数图象关于y=x对称.则只有直线PQ与直线y=x垂直时|PQ|才能取得最小值.设P,则点P到直线y=x的距离为d=,令g(x)=ex-x,(x>0),则g′(x)=ex-1,令g′(x)=ex-1>0得x>ln2;令g′(x)=ex-1<0得00,所以dmin=.则|PQ|=2dmin=(1-ln2).故B正确.答案B14.已知定义域为R的函数f(x)满足:f(4)=-3,且对任意x∈R总有f′(x)<3,则不等式f(x)<3x-15的解集为()A.(-∞,4)B.(-∞,-4)C.(-∞,-4)∪(4,+∞...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学 考纲解读与热点难点突破 专题04 导数及其应用(热点难点突破)文(含解析)-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部