电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学 经典错题深度剖析及针对训练 专题04 函数的定义域及值域-人教版高三全册数学试题VIP免费

高考数学 经典错题深度剖析及针对训练 专题04 函数的定义域及值域-人教版高三全册数学试题_第1页
1/13
高考数学 经典错题深度剖析及针对训练 专题04 函数的定义域及值域-人教版高三全册数学试题_第2页
2/13
高考数学 经典错题深度剖析及针对训练 专题04 函数的定义域及值域-人教版高三全册数学试题_第3页
3/13
专题04函数的定义域及值域【标题01】没有理解掌握已知原函数求复合函数的定义域的方法【习题01】已知函数的定义域为,求函数的定义域.【习题01针对训练】函数的定义域是,则函数的定义域是().A.B.C.D.【标题02】没有理解掌握已知复合函数的定义域求原函数的定义域的方法【习题02】已知函数的定义域为,求函数的定义域.【经典错解】由题得所以函数的定义域为.【详细正解】 的定义域为,即在中∈,令,∈,则∈,即在中,∈∴的定义域为.【深度剖析】(1)经典错解错在没有理解掌握已知复合函数的定义域求原函数的定义域的方法.(2)已知复合函数的定义域为,求原函数的定义域,只需根据求出函数的值域,即得原函数的定义域.【习题02针对训练】已知函数的定义域是,则的定义域是()A.B.C.D.【标题03】根式化简错误导致同一函数判断出错【习题03】下列各组函数中,是同一函数的是.A.,B.,C.,D.,【习题03针对训练】下列每组函数是同一函数的是.A.,B.,C.,D.,【标题04】求复合函数的定义域时漏掉了对数函数的限制条件【习题04】函数的定义域为.【经典错解】由题得所以函数的定义域是.【详细正解】由题得所以函数的定义域是.【深度剖析】(1)经典错解错在求复合函数的定义域时漏掉了对数函数的限制条件.(2)考虑复合函数的定义域时,必须考虑每一个函数的限制条件,不能漏掉.错解就是漏掉了对数函数的限制条件.【习题04针对训练】函数的定义域为()A.B.C.D.【标题05】误认为函数的最值总是在函数图像的端点取得【习题05】求函数,的值域.地理解为函数的最值一定是在端点取得.【习题05针对训练】已知二次函数在区间上有最大值,求实数的值.【标题06】求函数的最值时忽略了函数的定义域【习题06】设是二次方程的两个实根,则对的正确判断是()A.最小值为B.最小值为8C.无最小值D.无法确定【经典错解】由题得所以的最小值为.故选A.【习题06针对训练】设函数在区间上有两个零点,则实数的取值范围是________.【标题07】讨论对数函数的最值没有对底数分类讨论【习题07】函数在区间上的最大值与最小值之差为,求的值.【经典错解】由题得函数的最大值为,最小值为,所以,.【详细正解】当时,,.当时,,.综合得.【深度剖析】(1)经典错解错在讨论对数函数的最值没有对底数分类讨论.(2)对于指数函数和对数函数,如果已知中没有说明大于1还是小于1,一般要分类讨论,因为时,它们都是增函数,时,它们都是减函数.【习题07针对训练】已知,则的取值范围是________.【标题08】消元时忽略了等式中的隐含条件【习题08】已知,试求的最大值.【习题08针对训练】求函数=的值域.【标题09】当二次函数的对称轴与函数的定义域的端点位置不确定时没有分类讨论【习题09】已知函数若时,≥0恒成立,求的取值范围.【经典错解】错解(1)恒成立,∴△=≤0恒成立解得的取值范围为.错解(2) 若时,≥0恒成立∴即解得的取值范围为.【详细正解】设的最小值为,(1)当即>4时,==,得故此时不存在;(2)当即-4≤≤4时,=3--≥0,得-6≤≤2,又-4≤≤4,故-4≤≤2;(3)即<-4时,==7+≥0,得≥-7,又<-4故-7≤<-4.综上所述,得.【习题09针对训练】二次函数满足,且.(1)求的解析式;(2)在区间上,的图象恒在的图象上方,求实数的取值范围.【标题10】数形结合分析时忽略了对函数定义域的研究考虑【习题10】已知函数的值域是,则实数的取值范围是.【经典错解】由题意得,函数的值域是,则当时,函数的值域是,显然成立;当时,则,解得或;当时,显然不满足题意.所以综上可知实数的取值范围是.【详细正解】由题意得,函数的值域是,则当时,函数的值域是,显然成立;当时,则,解得或;当时,显然不满足题意.所以综上可知实数的取值范围是.【深度剖析】(1)经典错解错在数形结合分析时忽略了对函数定义域的研究考虑.(2)错误在讨论时,误认为,要使函数的值域为,必须,其实也可以.因为当时,二次函数在轴下面也有图像,但是受到的限制,所以下面的图像不满足,所以保留下来的只是轴和轴上方的图像,所以函数的值域还是满足.【习题10针对训练】已知函数的值域为,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学 经典错题深度剖析及针对训练 专题04 函数的定义域及值域-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部