2-10《导数的概念及运算》1.已知f(x)=x2+2xf′(2014)+2014lnx,则f′(2014)=()A.2015B.-2015C.2014D.-2014解析:f′(x)=x+2f′(2014)+,所以f′(2014)=2014+2f′(2014)+,即f′(2014)=-(2014+1)=-2015.答案:B2.曲线y=在点(1,-1)处的切线方程为()A.y=x-2B.y=-3x+2C.y=2x-3D.y=-2x+1解析:由题意得y=1+,所以y′=,所以所求曲线在点(1,-1)处的切线的斜率为-2,故由直线的点斜式方程得所求切线方程为y+1=-2(x-1),即y=-2x+1.答案:D3.已知曲线y1=2-与y2=x3-x2+2x在x=x0处切线的斜率的乘积为3,则x0的值为()A.-2B.2C.D.1解析:由题知y′1=,y′2=3x2-2x+2,所以两曲线在x=x0处切线的斜率分别为,3x-2x0+2,所以=3,所以x0=1.答案:D4.设函数f(x)在(0,+∞)内可导,且f(ex)=x+ex,则f′(1)=________.解析:令ex=t,则x=lnt,∴f(t)=lnt+t,∴f′(t)=+1,∴f′(1)=2.答案:25.已知函数y=f(x)在点(2,f(2))处的切线方程为y=2x-1,则函数g(x)=x2+f(x)在点(2,g(2))处的切线方程为________.解析:因为y=f(x)在点(2,f(2))处的切线方程为y=2x-1,所以f′(2)=2,f(2)=3.由g(x)=x2+f(x)得g′(x)=2x+f′(x),所以g(2)=22+f(2)=7,即点(2,g(2))为(2,7),g′(2)=4+f′(2)=6,所以g(x)=x2+f(x)在点(2,g(2))处的切线方程为y-7=6(x-2),即6x-y-5=0.答案:6x-y-5=0