2018年高考数学一轮复习第五章数列第31讲数列求和实战演练理1.(2016·北京卷)已知为等差数列,Sn为其前n项和.若a1=6,a3+a5=0,则S6=6.解析:设等差数列的公差为d,∵a1=6,a3+a5=0,∴6+2d+6+4d=0,∴d=-2,∴S6=6×6+×(-2)=6.2.(2015·全国卷Ⅱ)设Sn是数列的前n项和,且a1=-1,an+1=SnSn+1,则Sn=-.解析:∵an+1=Sn+1-Sn,∴Sn+1-Sn=Sn+1Sn,又由a1=-1,知Sn≠0.∴-=1,∴是等差数列,且公差为-1,而==-1,∴=-1+(n-1)×(-1)=-n,∴Sn=-.3.(2016·山东卷)已知数列的前n项和Sn=3n2+8n,是等差数列,且an=bn+bn+1.(1)求数列的通项公式;(2)令cn=,求数列的前n项和Tn.解析:(1)由题意知,当n≥2时,an=Sn-Sn-1=6n+5.当n=1时,a1=S1=11,所以an=6n+5.设数列的公差为d.由即可解得b1=4,d=3.所以bn=3n+1.(2)由(1)知cn==3(n+1)·2n+1.又Tn=c1+c2+…+cn,得Tn=3×[2×22+3×23+…+(n+1)×2n+1],2Tn=3×[2×23+3×24+…+(n+1)×2n+2],两式作差,得-Tn=3×[2×22+23+24+…+2n+1-(n+1)×2n+2]=3×=-3n·2n+2.所以Tn=3n·2n+2.4.(2015·全国卷Ⅰ)Sn为数列的前n项和.已知an>0,a+2an=4Sn+3.(1)求的通项公式;(2)设bn=,求数列的前n项和.解析:(1)由a+2an=4Sn+3,可知a+2an+1=4Sn+1+3.可得a-a+2(an+1-an)=4an+1,即2(an+1+an)=a-a=(an+1+an)(an+1-an).由于an>0,所以an+1-an=2.又由a+2a1=4a1+3,解得a1=-1(舍去)或a1=3.所以是首项为3,公差为2的等差数列,通项公式为an=2n+1.(2)由an=2n+1可知bn===.设数列的前n项和为Tn,则Tn=b1+b2+…+bn==.1