2017年下期高一年级第一次月考试卷数学(试题卷)注意事项:1.本卷为衡阳八中高一年级理科实验班第一次月考试卷,分两卷。其中共22题,满分150分,考试时间为120分钟。2.考生领取到试卷后,应检查试卷是否有缺页漏页,重影模糊等妨碍答题现象,如有请立即向监考老师通报。开考15分钟后,考生禁止入场,监考老师处理余卷。3.请考生将答案填写在答题卡上,选择题部分请用2B铅笔填涂,非选择题部分请用黑色0.5mm签字笔书写。考试结束后,试题卷与答题卡一并交回。★预祝考生考试顺利★第I卷选择题(每题5分,共60分)本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的。1.已知集合A={1,﹣1},B={1,0,﹣1},则集合C={a+b|a∈A,b∈B}中元素的个数为()A.2B.3C.4D.52.已知函数f(x+1)是偶函数,当1<x1<x2时,[f(x2)﹣f(x1)](x2﹣x1)>0恒成立,设a=f(﹣),b=f(2),c=f(3),则a,b,c的大小关系为()A.b<a<cB.c<b<aC.b<c<aD.a<b<c3.已知y=f(x)是定义在R上的增函数且为奇函数,若对任意的x,y∈R,不等式f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,则当x>3时,x2+y2的取值范围是()A.(3,7)B.(9,25)C.(13,49)D.(9,49)4.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={};②M={(x,y)|y=sinx+1};③M={(x,y)|y=log2x};④M={(x,y)|y=ex﹣2}.其中是“垂直对点集”的序号是()A.①②B.②③C.①④D.②④5.已知函数f(x)=2x+1,x∈N*.若∃x0,n∈N*,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,则称(x0,n)为函数f(x)的一个“生成点”.函数f(x)的“生成点”共有()A.1个B.2个C.3个D.4个6.已知函数,则f(3)=()A.﹣3B.﹣1C.0D.17.函数f(x)=1+log2x与g(x)=2﹣x+1在同一直角坐标系下的图象大致是()A.B.C.D.8.函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象有两个不同的公共点,则实数a的值为()A.n(n∈Z)B.2n(n∈Z)C.2n或(n∈Z)D.n或(n∈Z)9.若函数f(x)=aex﹣x﹣2a有两个零点,则实数a的取值范围是()A.B.C.(﹣∞,0)D.(0,+∞)10.设函数f(x)=,若互不相等的实数x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是()A.(]B.()C.(]D.()11.已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若,则实数a的取值范围是()A.B.C.D.12.已知函数f(x)=,若a<b,f(a)=f(b),则实数a﹣2b的取值范围为()A.B.C.D.第II卷非选择题(共90分)二.填空题(每题5分,共20分)13.函数y=ln(1+)+的定义域为.14.要使函数f(x)=x2+3(a+1)x﹣2在区间(﹣∞,3]上是减函数,则实数a的取值范围.15.函数f(x)=log2•log(2x)的最小值为.16.对于函数,如果存在函数(为常数),使得对于区间D上的一切实数都有成立,则称函数为函数在区间D上的一个“覆盖函数”,设,,若函数为函数在区间上的一个“覆盖函数”,则的最大值为________。三.解答题(共6题,共70分)17.(本题满分10分)已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.(1)求A∩(∁UB);(2)若A∪C=C,求a的取值范围.18.(本题满分12分)已知函数(a>0,a≠1,m≠﹣1),是定义在(﹣1,1)上的奇函数.(I)求f(0)的值和实数m的值;(II)当m=1时,判断函数f(x)在(﹣1,1)上的单调性,并给出证明;(III)若且f(b﹣2)+f(2b﹣2)>0,求实数b的取值范围.19.(本题满分12分)已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[﹣1,4]上的最大值是12.(1)求f(x)的解析式;(2)设函数f(x)在x∈[t,t+1]上的最小值为g(t),求g(t)的表达式.20.(本题满分12分)我国科研人员屠呦呦法相从青篙中提取物青篙素抗疟性超强,几乎达到100%,据监测:服药后每毫升血液中的含药量...