第65讲用样本估计总体[解密考纲]用样本估计总体在高考中,三种题型均有可能考查,作为解答题时,题目较简单,属于不能失分的题目.一、选择题1.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是(B)A.45B.50C.55D.60解析根据频率分布直方图,低于60分的同学所占频率为(0.005+0.01)×20=0.3,故该班的学生人数为=50(人),故选B.2.某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其平均数和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的平均数和方差分别为(D)A.,s2+1002B.+100,s2+1002C.,s2D.+100,s2解析对平均数和方差的意义深入理解可巧解,因为每个数据都加上了100,故平均数也增加100,而离散程度应保持不变,故选D.3.如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图,估计这批产品的中位数为(C)A.20B.25C.22.5D.22.75解析产品的中位数出现在概率是0.5的地方,自左至右各小矩形面积依次为0.1,0.2,0.4,0.15,0.15,设中位数是x,则由0.1+0.2+0.08·(x-20)=0.5,得x=22.5,故选C.4.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有(D)A.a>b>cB.b>c>aC.c>a>bD.c>b>a解析平均数a=×(15+17+14+10+15+17+17+16+14+12)=14.7,中位数b=15,众数c=17,∴c>b>a.15.(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是(A)A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳解析根据折线图可知,2014年8月到9月、2014年10月到11月等月接待游客量都是减少,所以A项错误.6.下面左图是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A1,A2,…,A16,右图是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是(B)A.6B.10C.91D.92解析由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知,数学成绩大于等于90的人数为10,因此输出结果为10,故选B.二、填空题7.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为__10__.解析设5个班级的人数分别为x1,x2,x3,x4,x5,则=7,=4,即5个整数平方和为20,最大的数比7大但与7的差值不能超过3,否则方差超过4,故最大值为10,最小值为4.8.如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为__6.8__.2解析 ==11,∴s2==6.8.9.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均属于区间[80,130],其频率分布直方图如图所示,则在60株树木中底部周长小于100cm的株数为__24__.解析由题意,在抽测的60株树木中,底部周长小于100cm的株数为(0.015+0.025)×10×60=24.三、解答题10.为迎接6月6日的“全国爱眼日”,某高中学生会从全体学生中随机抽取16名学生,经校医用视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如图,若视力测试结果不低于5.0,则称为“好视力”.(1)写出这组数据的众数和中位数;(2)从这16人中随机选取3人,求至少有2人是“好视力”的概率;(3)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.解析(1)由题意知众数为4.6和4.7,中位数为4.75.(2)记“至少有2人是‘好视力’”为事件A,则事件A包含的基本事件个数为C·C+C,总的基本事件...