电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

浙江省高考数学一轮复习 第二章 不等式 第4节 绝对值不等式及其应用(含解析)-人教版高三全册数学试题VIP免费

浙江省高考数学一轮复习 第二章 不等式 第4节 绝对值不等式及其应用(含解析)-人教版高三全册数学试题_第1页
1/12
浙江省高考数学一轮复习 第二章 不等式 第4节 绝对值不等式及其应用(含解析)-人教版高三全册数学试题_第2页
2/12
浙江省高考数学一轮复习 第二章 不等式 第4节 绝对值不等式及其应用(含解析)-人教版高三全册数学试题_第3页
3/12
第4节绝对值不等式及其应用考试要求1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-b|≤|a-c|+|c-b|(a,b∈R);2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-c|+|x-b|≥a.知识梳理1.绝对值不等式的解法(1)含绝对值的不等式|x|a的解集不等式a>0a=0a<0|x|a(-∞,-a)∪(a,+∞)(-∞,0)∪(0,+∞)R(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.2.含有绝对值的不等式的性质(1)如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立;(2)|a|-|b|≤|a±b|≤|a|+|b|;(3)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.[常用结论与易错提醒]1.绝对值不等式的三种常用解法:零点分段法,数形结合法,构造函数法.2.不等式恒成立问题、存在性问题都可以转化为最值问题解决.3.可以利用绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|求函数最值,要注意其中等号成立的条件.诊断自测1.判断下列说法的正误.(1)若|x|>c的解集为R,则c≤0.()(2)不等式|x-1|+|x+2|<2的解集为∅.()(3)对|a+b|≥|a|-|b|当且仅当a>b>0时等号成立.()(4)对|a|-|b|≤|a-b|当且仅当|a|≥|b|时等号成立.()(5)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.()解析(1)当c=0时,x≠0;(3)当a≥0≥b且|a|≥|b|时,等号成立;(4)当ab≥0且|a|≥|b|时,等号成立.答案(1)×(2)√(3)×(4)×(5)√2.(2020·杭州四中仿真)已知x∈R,则“|x-3|-|x-1|<2”是“x≠1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析|x-3|-|x-1|<2等价于或或解得x>1,所以“|x-3|-|x-1|<2”是“x≠1”的充分不必要条件,故选A.答案A3.若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8B.-1或5C.-1或-4D.-4或8解析分类讨论:当a≤2时,f(x)=显然,x=-时,f(x)min=+1-a=3,∴a=-4,当a>2时,f(x)=显然x=-时,f(x)min=--1+a=3,∴a=8.答案D4.设x∈R,不等式|x|+|2x-1|>2的解集为________.解析当x<0时,原不等式可化为-x+1-2x>2,解得x<-;当0≤x≤时,原不等式可化为x+1-2x>2,即x<-1,无解;当x>时,原不等式可化为x+2x-1>2,解得x>1.综上,原不等式的解集为.答案5.若不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围为________.解析设y=|2x-1|+|x+2|=当x<-2时,y=-3x-1>5;当-2≤x<时,5≥y=-x+3>;当x≥时,y=3x+1≥,故函数y=|2x-1|+|x+2|的最小值为.因为不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,所以≥a2+a+2.解不等式≥a2+a+2,得-1≤a≤,故实数a的取值范围为.答案6.设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,则不等式f(x)≥3x+2的解集为________.(2)若不等式f(x)≤0的解集为{x|x≤-1},则a的值为________.解析(1)当a=1时,f(x)≥3x+2可化为|x-1|≥2.由此可得x≥3或x≤-1.故当a=1时,不等式f(x)≥3x+2的解集为{x|x≥3或x≤-1}.(2)由f(x)≤0得|x-a|+3x≤0.此不等式化为不等式组或即或因为a>0,所以不等式组的解集为.由题设可得-=-1,故a=2.答案(1){x|x≥3或x≤-1}(2)2考点一含绝对值不等式的解法【例1】(一题多解)解不等式|x-1|+|x+2|≥5.解法一如图,设数轴上与-2,1对应的点分别是A,B,则不等式的解就是数轴上到A,B两点的距离之和不小于5的点所对应的实数.显然,区间[-2,1]不是不等式的解集.把A向左移动一个单位到点A1,此时A1A+A1B=1+4=5.把点B向右移动一个单位到点B1,此时B1A+B1B=5,故原不等式的解集为(-∞,-3]∪[2,+∞).法二...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

浙江省高考数学一轮复习 第二章 不等式 第4节 绝对值不等式及其应用(含解析)-人教版高三全册数学试题

您可能关注的文档

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部