内蒙古包头市2016年高考数学一模试卷(理科)(解析版)一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={﹣2,﹣1,0,1,2,3},B={x|x2﹣2x﹣3<0},则A∩B=()A.{﹣1,0}B.{0,1,2}C.{﹣1,0,1}D.{﹣2,﹣1,0}2.设复数z满足=i,则z的虚部为()A.﹣2B.0C.﹣1D.13.为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.等比数列{an}的前n项和为Sn,已知S4=a2+a3+9a1,a5=32,则a1=()A.﹣B.C.2D.﹣25.设函数f(x)=,若f(a)>1,则a的取值范围是()A.B.D.6.某几何体的三视图如图所示,则该几何体的体积为()A.B.32C.D.7.已知圆心为C的圆经过点A(1,1)和B(2,﹣2),且圆心C在直线l:x﹣y+1=0上,则点C与坐标原点的距离为()A.B.5C.13D.258.执行如图所示的程序框图,若输入的x,y,k分别为1,2,3,则输出的N=()A.B.C.D.9.已知M是球O的直径CD上的一点,CM=MD,CD⊥平面α,M为垂足,α截球O所得截面的面积为π,则球O的表面积为()A.3πB.9πC.D.10.已知双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则此双曲线的离心率e的最大值为()A.B.C.D.11.如图,已知AB是圆O的直径,AB=2,点C在直径AB的延长线上,BC=1,点P是圆O上半圆上的动点,以PC为边作等边三角形PCD,且点D与圆心分别在PC的两侧,记∠POB=x,将△OPC和△PCD的面积之和表示成x的函数f(x),则y=f(x)取最大值时x的值为()A.B.C.D.π12.定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x)且在[0,2]上为增函数,若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4的值为()A.8B.﹣8C.0D.﹣4二、填空题(共4小题,每小题5分,满分20分)13.设,是夹角为60°的两个单位向量,若=+λ与=2﹣3垂直,则λ=.14.若,则目标函数z=x+2y的取值范围是.15.已知(1+ax)(1+x)5的展开式中x3的系数为5,则a=.16.已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=4Sn﹣1,则a10=.三、解答题(共5小题,满分60分)17.已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC(1)求角A的大小;(2)求△ABC的面积的最大值.18.随机观测生产某种们零件的某工厂20名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,48,37,25,45,43,31,49,34,33,43,38,32,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30]20.10(30,35]40.20(35,40]50.25(40,45]mfm(45,50]nfn(1)确定样本频率分布表中m,n,fm和fn的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取3人,至少有1人的日加工零件数落在区间(30,35]的概率.19.如图,在底面是直角梯形的四棱锥S﹣ABCD中,∠ABC=∠DAB=90°,SA⊥平面ABCD,SA=AB=BC=2,AD=1,M为SB的中点,过点M、A、D的截面MADN交SC于点N.(1)在图中作出截面MADN,判断其形状并说明理由;(2)求直线CD与平面MADN所成角的正弦值.20.在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的左、右焦点分别是F1、F2,过F2的直线x+y﹣=0交C于A、B两点,线段AB的中点为(,).(1)求C的方程;(2)在C上是否存在点P,使S△PAB=S?若存在,求出点P的坐标;若不存在,请说明理由.21.已知函数f(x)=alnx+x2(a为实常数).(1)若a=﹣2,求证:函数f(x)在(1,+∞)上是增函数;(2)求函数f(x)在[1,e]上的最小值及相应的x值;(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.如图,直线AB经过圆O上的点C,并且OA=OB...