第二讲数列的综合应用限时规范训练一、选择题1.已知数列{an}满足a1=5,anan+1=2n,则=()A.2B.4C.5D.解析:因为===22,所以令n=3,得=22=4,故选B.答案:B2.若数列{an}满足a1=15,且3an+1=3an-2,则使ak·ak+1<0的k值为()A.22B.21C.24D.23解析:因为3an+1=3an-2,所以an+1-an=-,所以数列{an}是首项为15,公差为-的等差数列,所以an=15-·(n-1)=-n+,令an=-n+>0,得n<23.5,所以使ak·ak+1<0的k值为23.答案:D3.已知数列{an}满足a1=1,an+1=则其前6项之和为()A.16B.20C.33D.120解析:a2=2a1=2,a3=a2+1=3,a4=2a3=6,a5=a4+1=7,a6=2a5=14,所以前6项和S6=1+2+3+6+7+14=33,故选C.答案:C4.数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n≥1),则a6=()A.3×44B.3×44+1C.44D.44+1解析:因为an+1=3Sn,所以an=3Sn-1(n≥2),两式相减得,an+1-an=3an,即=4(n≥2),所以数列a2,a3,a4,…构成以a2=3S1=3a1=3为首项,公比为4的等比数列,所以a6=a2·44=3×44.答案:A5.已知函数f(n)=n2cos(nπ),且an=f(n),则a1+a2+…+a100=()A.0B.100C.5050D.10200解析:a1+a2+a3+…+a100=-12+22-32+42-…-992+1002=(22-12)+(42-32)+…+(1002-992)=3+7+…+199==5050.答案:C6.已知数列{an}的首项a1=1,且an-an+1=anan+1(n∈N+),则a2015=()A.B.C.-D.解析: an-an+1=anan+1,∴-=1,又 a1=1,∴=1,∴数列是以首项为1,公差为1的等差数列,∴=1+(n-1)=n,∴=2015,∴a2015=.故选D.答案:D7.已知数列{an}的通项公式为an=(-1)n(2n-1)·cos+1(n∈N*),其前n项和为Sn,则S60=()A.-30B.-60C.90D.120解析:由题意可得,当n=4k-3(k∈N*)时,an=a4k-3=1;当n=4k-2(k∈N*)时,an=a4k-2=6-8k;当n=4k-1(k∈N*)时,an=a4k-1=1;当n=4k(k∈N*)时,an=a4k=8k.∴a4k-3+a4k-2+a4k-1+a4k=8,∴S60=8×15=120.答案:D8.已知Sn是非零数列{an}的前n项的和,且Sn=2an-1,则S2017等于()A.1-22016B.22017-1C.22016-1D.1-22017解析: Sn=2an-1,∴S1=1,且Sn=2(Sn-Sn-1)-1,即Sn=2Sn-1+1,得Sn+1=2(Sn-1+1),由此可得数列{Sn+1}是首项为2,公比为2的等比数列,得Sn+1=2n,即Sn=2n-1,∴S2017=22017-1,故选B.答案:B二、填空题9.若数列{an}满足=,且a1=3,则an=________.解析:由=,得-=2,∴数列是首项为,公差为2的等差数列.∴=+(n-1)×2=2n-,∴an=.答案:10.已知正项数列{an}满足a-6a=an+1an.若a1=2,则数列{an}的前n项和为________.解析: a-6a=an+1an,∴(an+1-3an)(an+1+2an)=0, an>0,∴an+1=3an,又a1=2,∴{an}是首项为2,公比为3的等比数列,∴Sn==3n-1.答案:3n-111.已知Sn为数列{an}的前n项和,且满足a1=1,anan+1=3n(n∈N*),则S2014=________.解析:由anan+1=3n知,当n≥2时,anan-1=3n-1.所以=3,所以数列{an}所有的奇数项构成以3为公比的等比数列,所有的偶数项也构成以3为公比的等比数列.又因为a1=1,所以a2=3,a2n-1=3n-1,a2n=3n.所以S2014=(a1+a3+…+a2013)+(a2+a4+…+a2014)=4×=2×31007-2.答案:2×31007-212.数列{an}中,a1=,an+1=(n∈N*),则数列{an}的通项公式an=________.解析:由已知可得(n+1)an+1=,设nan=bn,则bn+1=,所以=+1,可得+1=+2=2,即是公比为2,首项为3的等比数列,故+1=3×2n-1∴an=.答案:三、解答题13.在数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0.(1)求数列{an}的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求Sn.解析:(1) an+2-2an+1+an=0,∴an+2-an+1=an+1-an,∴{an+1-an}为常数列,∴{an}是以a1为首项的等差数列,设an=a1+(n-1)d,则a4=a1+3d,∴d==-2,∴an=10-2n.(2)由(1)知an=10-2n,令an=0,得n=5.当n>5时,an<0;当n=5时,an=0;当n<5时,an>0.∴当n>5时,Sn=|a1|+|a2|+…+|an...