2016年广东省汕头市高考数学二模试卷(理科)一、选择题:(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.已知函数y=f(log2x)的定义域为[1,2],那么函数y=f(x)的定义域为()A.[2,4]B.[1,2]C.[0,1]D.(0,1]2.在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=()A.58B.88C.143D.1763.若m为实数且(2+mi)(m﹣2i)=﹣4﹣3i,则m=()A.﹣1B.0C.1D.24.在三角形ABC中,已知AB=5,AC=7,AD是BC边上的中线,点E是AD的一个三等分点(靠近点A),则=()A.12B.6C.24D.45.给出下列4个命题,其中正确的个数是()①若“命题p∧q为真”,则“命题p∨q为真”;②命题“∀x>0,x﹣lnx>0”的否定是“∃x>0,x﹣lnx≤0”;②“tanx>0”是“sin2x>0”的充要条件;④计算:9192除以100的余数是1.A.1个B.2个C.3个D.4个6.如图,该程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输出的a=3,则输入的a,b分别可能为()A.15、18B.14、18C.13、18D.12、187.一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣8.从1,2,3,4,5,6,7,8,9这9个数字中任取两个,其中一个作为底数,另一个作为真数,则可以得到不同对数值的个数为()A.64B.56C.53D.519.已知正三棱锥S﹣ABC的六条棱长都为,则它的外接球的体积为()A.B.C.D.10.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG是边长为2的等边三角形,则f(1)的值为()A.B.C.D.11.设{an}是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,则下列等式中恒成立的是()A.X+Z=2YB.Y(Y﹣X)=Z(Z﹣X)C.Y2=XZD.Y(Y﹣X)=X(Z﹣X)12.已知定义在R上的函数满足条件f(x+)=﹣f(x),且函数y=f(x﹣)为奇函数,则下面给出的命题,错误的是()A.函数y=f(x)是周期函数,且周期T=3B.函数y=f(x)在R上有可能是单调函数C.函数y=f(x)的图象关于点对称D.函数y=f(x)是R上的偶函数二、填空题:(本大题共4小题,每小题5分,共20分.)13.若x,y满足约束条件,则的最小值为.14.已知等比数列{an},满足a1=1,a2016=2,函数y=f(x)的导函数为y=f′(x),且f(x)=x(x﹣a1)(x﹣a2)…(x﹣a2016),那么f′(0)=.15.二项式(4x﹣2﹣x)6(x∈R)展开式中的常数项是.16.已知函数f(x)=﹣1的定义域是[a,b](a,b为整数),值域是[0,1],请在后面的下划线上写出所有满足条件的整数数对(a,b).三、解答题:(本大题8个小题,共70分,解答须写出文字说明、证明过程、演算步骤.)17.如图,在四边形ABCD中,CB=CA=AD=1,=﹣1,sin∠BCD=.(1)求证:AC⊥CD;(2)求四边形ABCD的面积;(3)求sinB的值.18.如图,已知直四棱柱ABCD﹣A1B1C1D1的底面中,DB=4,∠DAB=∠DCB=90°,∠BDC=∠BDA=60°.(1)求直线AC与平面BB1C1C所成的角正弦值;(2)若异面直线BC1与AC所成的角的余弦值为,求二面角B﹣A1C1﹣A的正切值.19.一批产品需要进行质量检验,检验方案是:先从这批产品中任取5件作检验,这5件产品中优质品的件数记为n.如果n=3,再从这批产品中任取2件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;如果n=5,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为200元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为x(单位:元),求x的分布列.20.如图,曲线Γ由曲线C1:和曲线C2:组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,(1)若F2(2,0),F3(﹣6,0),求曲线Γ的方程...