第一节分类加法计数原理与分步乘法计数原理质量铸就品牌品质赢得未来数学结束第九章计数原理与概率、随机变量及其分布第一节分类加法计数原理与分步乘法计数原理[课前·双基落实]基础盘查一1.(1)×(2)√2.93.36基础盘查二1.(1)√(2)×2.161203.36第一节分类加法计数原理与分步乘法计数原理质量铸就品牌品质赢得未来数学结束[课堂·考点突破]考点一1.解析:可将安排方案分为三类:①甲排在周一,共有A24种排法;②甲排在周二,共有A23种排法;③甲排在周三,共有A22种排法,故不同的安排方案共有A24+A23+A22=20种.故选A.答案:A2.解析:分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O和A→C→O2种不同的走法;第三类,中间过两个点,有A→B→C→O和A→C→B→O2种不同的走法,由分类加法计数原理可得共有1+2+2=5种不同的走法.答案:5第一节分类加法计数原理与分步乘法计数原理质量铸就品牌品质赢得未来数学结束3.解析:当m=1时,n=2,3,4,5,6,7共6种当m=2时,n=3,4,5,6,7共5种;当m=3时,n=4,5,6,7共4种;当m=4时,n=5,6,7共3种;当m=5时,n=6、7共2种,故共有6+5+4+3+2=20种.答案:20第一节分类加法计数原理与分步乘法计数原理质量铸就品牌品质赢得未来数学结束考点二[典题例析]解析:(1)每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729种.(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120种.(3)每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63=216种.第一节分类加法计数原理与分步乘法计数原理质量铸就品牌品质赢得未来数学结束[演练冲关]解析:从中选出2名男医生的选法有C26=15种,从中选出1名女医生的选法有C15=5种,所以不同的选法共有15×5=75种,故选C.答案:C第一节分类加法计数原理与分步乘法计数原理质量铸就品牌品质赢得未来数学结束考点三[多角探明]1.解析:从A开始涂色,A有6种涂色方法,B有5种涂色方法,C有4种涂色方法,D有4种涂色方法.由分步乘法计数原理可知,共有6×5×4×4=480种涂色方法.答案:4802.解析:区域A有5种涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有5×4×4+5×4×3×3=260种涂色方法.答案:260第一节分类加法计数原理与分步乘法计数原理质量铸就品牌品质赢得未来数学结束3.解析:分类讨论:第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24个;第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36个.答案:D第一节分类加法计数原理与分步乘法计数原理质量铸就品牌品质赢得未来数学结束4.解析:从5个元素中选出2个元素,小的给集合A,大的给集合B,有C25=10种选择方法;从5个元素中选出3个元素,有C35=10种选择方法,再把这3个元素从小到大排列,中间有2个空,用一个隔板将其隔开,一边给集合A,一边给集合B,方法种数是2,故此时有10×2=20种选择方法;从5个元素中选出4个元素,有C45=5种选择方法,从小到大排列,中间有3个空,用一个隔板将其隔开,一边给集合A,一边给集合B,方法种数是3,故此时有5×3=15种选择方法;从5个元素中选出5个元素,有C55=1种选择方法,同理隔开方法有4种,故此时有1×4=4种选择方法.根据分类加法计数原理,总计为10+20+15+4=49种选择方法.故选B.答案:B谢谢观看