电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

方程和不等式汇总与经典例题VIP免费

方程和不等式汇总与经典例题_第1页
1/13
方程和不等式汇总与经典例题_第2页
2/13
方程和不等式汇总与经典例题_第3页
3/13
1/13方程和不等式一、重点、难点提示:1.一元二次方程的一般形式:ax2+bx+c=0(a、b、c是常数,a≠0)。在解一元二次方程,应按方程特点选择方法,各方法依次为:(1)直接开平方法;(2)配方法;(3)公式法;(4)因式分解法。一元二次方程的求根公式是:x=(b2-4ac≥0)。(注意符号问题)2.解分式方程的基本思想是:将分式方程转化为整式方程,转化的方法有两种:(1)去分母法;(2)换元法。3.一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac。当Δ>0时,方程有两个不相等的实数根x1=,x2=;当Δ=0时,方程有两个相等的实数根x1=x2=-;当Δ<0时,方程没有实数根。4.若一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2,则x1+x2=-,x1x2=。(注意两根的和是的相反数)。以x1,x2为根的一元二次方程是x2-(x1+x2)x+x1x2=0。5.不等式的解法:解一元一次不等式和解一元一次方程类似。不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。6.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况见下表:不等式组(a2x,得x>-2解不等式≥x-,得x≤-1。所以不等式组的解集是-24x+2,得x<1。解不等式≥,得x≥-2。所以不等式组的解集是:-2≤x<1。所以不等式组的整数解是:-2,-1,0。例3.已知方程(m-2)+(m+2)x+4=0是关于x的一元二次方程。求m的值,并求此方程的两根。分析:根据一元二次方程的定义,未知数x的最高次数是2,而且二次项的系数不能为0,所以m2-2=2,且m-2≠0。于是可求m的值,进而求得方程的解。解:(1)依题意,得m2-2=2,且m-2≠0。∴m=±2,且m≠2。∴m=-2。(2)把m=-2代入原方程,整理得(x-5)2=1∴x-5=±1,∴x1=4,x2=6。例4.已知x是实数,且-(x2+3x)=2,那么x2+3x的值为()A、1B、-3或1C、3D、-1或34/13误解:设x2+3x=y,则原方程可变为-y=2,即y2+2y-3=0。∴y1=-3,y2=1。∴x2+3x=-3或1。故选B。剖析:因为x为实数,所以要求x2+3x=-3和x2+3x=1有实数解。当x2+3x=-3时,即是x2+3x+3=0,此时Δ=32-4×1×3<0,方程无实数解,即x不是实数,与题设不符,应舍去;当x2+3x=1时,即是x2+3x-1=0,此时Δ=32-4×1×(-1)>0,方程有实数解,即x是实数,符合题设,故x2+3x=1。正确答案:选A。说明:此题由解分式方程衍变而来,大大增加了错误机会,解题时,若忽视“实数”这个题设条件,将求得的值不加检验直接写出,则前功尽弃。例5.解下列方程:(1)=1,(2)x2+x-+1=0。分析(1)宜用去分母法解;(2)宜用换元法,可设x2+x=y,将原方程变为y-+1=0,先求出y,再求出x。解(1)原方程即为+-=1去分母,得x-2+4x-2(x+2)=(x+2)(x-2)。整理,得x2-3x+2=0。5/13∴x1=1,x2=2。经检验x=1是原方程的根,x=2是增根,∴原方程的根是x=1。(2)设x2+x=y,则原方程可变为y-+1=0。∴y2+y-6=0,∴y1=-3,y2=2当y=-3时,x2+x=-3,x2+x+3=0,此方程无实数根,当y=2时,x2+x=2,x2+x-2=0,x1=-2,x2=1。经检验,x1=-2,x2=1都是原方程的根。∴原方程的根是x1=-2,x2=1。例6.若方程组的解x与y相等,则a的值等于()。A、4B、10C、11D、12分析:先解方程组再将求得的解代入方程ax+(a-1)y=3中,便可求得a的值。6/13解:解方程组,得把代入ax+(a-1)y=3,得a·+(a-1)·=3,解之,得a=11。故选C。例7.已知关于x的方程(k-2)x2-2(k-1)x+(k+1)=0,且k≤3。(1)求证:此方程总有实数根;(2)当方程有两实数根,且两实数根的平方和等于4时,k的值等于多少?分析:本题没有指明关于x的方程的类型,要分一元一次方程和一元二次方程两种情况讨论。(1)证明①当k=2,方程为一元...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

方程和不等式汇总与经典例题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部