电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

离散数学集合论部分形成性考核书面作业VIP免费

离散数学集合论部分形成性考核书面作业_第1页
1/6
离散数学集合论部分形成性考核书面作业_第2页
2/6
离散数学集合论部分形成性考核书面作业_第3页
3/6
实用标准文案精彩文档离散数学作业3离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业。要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年11月7日前完成并上交任课教师(不收电子稿)。并在03任务界面下方点击“保存”和“交卷”按钮,完成并上交任课教师。一、填空题1.设集合{1,2,3},{1,2}AB,则P(A)-P(B)={{3},{1,2,3},{1,3},{2,3}},AB={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>}.2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024.3.设集合A={0,1,2,3},B={2,3,4,5},R是A到B的二元关系,},,{BAyxByAxyxR且且则R的有序对集合为{<2,2>,<2,3>,<3,2>},<3,3>.4.设集合A={1,2,3,4},B={6,8,12},A到B的二元关系R=},,2,{ByAxxyyx那么R-1={<6,3>,<8,4>}5.设集合A={a,b,c,d},A上的二元关系R={,,,},则R具有的性质是反自反性,反对称性.6.设集合A={a,b,c,d},A上的二元关系R={,,,},若在R中再增加两个元素,,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有2个.8.设A={1,2}上的二元关系为R={|xA,yA,x+y=10},则R的自反闭包为{<1,1>,<2,2>}.9.设R是集合A上的等价关系,且1,2,3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3>等元素.10.设集合A={1,2},B={a,b},那么集合A到B的双射函数是姓名:学号:得分:教师签名:实用标准文案精彩文档{<1,a>,<2,b>},或{<1,b>,<2,a>}二、判断说明题(判断下列各题,并说明理由.)1.若集合A={1,2,3}上的二元关系R={<1,1>,<2,2>,<1,2>},则(1)R是自反的关系;(2)R是对称的关系.(1)R不是自反关系,因为没有有序对<3,3>.(2)R不是对称关系,因为没有有序对<2,1>2.如果R1和R2是A上的自反关系,判断结论:“R-11、R1∪R2、R1∩R2是自反的”是否成立?并说明理由.解:成立.因为R1和R2是A上的自反关系,即IAR1,IAR2。由逆关系定义和IAR1,得IAR1-1;由IAR1,IAR2,得IAR1∪R2,IAR1R2。所以,R1-1、R1∪R2、R1R2是自反的。3.若偏序集的哈斯图如图一所示,则集合A的最大元为a,最小元不存在.abcd图一gefh实用标准文案精彩文档错误.集合A的最大元不存在,a是极大元.4.设集合A={1,2,3,4},B={2,4,6,8},,判断下列关系f是否构成函数f:BA,并说明理由.(1)f={<1,4>,<2,2,>,<4,6>,<1,8>};(2)f={<1,6>,<3,4>,<2,2>};(3)f={<1,8>,<2,6>,<3,4>,<4,2,>}.解:(1)f不能构成函数.因为A中的元素3在f中没有出现.(2)f不能构成函数.因为A中的元素4在f中没有出现.(3)f可以构成函数.因为f的定义域就是A,且A中的每一个元素都有B中的唯一一个元素与其对应,满足函数定义的条件.三、计算题1.设}4,2{},5,2,1{},4,1{},5,4,3,2,1{CBAE,求:(1)(AB)~C;(2)(AB)-(BA)(3)P(A)-P(C);(4)AB.解:(1)因为A∩B={1,4}∩{1,2,5}={1},~C={1,2,3,4,5}-{2,4}={1,3,5}所以(A∩B)~C={1}{1,3,5}={1,3,5}(2)(AB)-(BA)={1,2,4,5}-{1}={2,4,5}(3)因为P(A)={,{1},{4},{1,4}}P(C)={,{2},{4},{2,4}}所以P(A)-P(C)={,{1},{4},{1,4}}-{,{2},{4},{2,4}}(4)因为AB={1,2,4,5},AB={1}所以AB=AB-AB={1,2,4,5}-{1}={2,4,5}实用标准文案精彩文档2.设A={{1},{2},1,2},B={1,2,{1,2}},试计算(1)(AB);(2)(A∩B);(3)A×B.(1)AB={{1},{2}}(2)A∩B={1,2}(3)A×B={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1,2>,<1,{1,2}>,<2,1>,<2,2>,<2,{1,2}>}3.设A={1,2,3,4,5},R={|xA,yA且x+y4},S={|xA,yA且x+y<0},试求R,S,RS,SR,R-1,S-1,r(S),s(R).解:R...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

离散数学集合论部分形成性考核书面作业

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部