【创新设计】-版高中数学3.1.1.2分数指数幂的运算同步训练苏教版必修1答案11答案4a3.化简:·(a>0,b>0)=________.答案a2b4.如果x>y>0,则=________.解析原式=xy-x·yx-y=xy-x·y-(y-x)=()y-x.答案()y-x答案-236.已知f(x)=ex-e-x,g(x)=ex+e-x.(1)求[f(x)]2-[g(x)]2的值;(2)设f(x)f(y)=4,g(x)g(y)=8,求的值.解:(1)[f(x)]2-[g(x)]2=[f(x)+g(x)][f(x)-g(x)]=(2ex)(-2e-x)=-4e0=-4.(2)f(x)f(y)=(ex-e-x)(ey-e-y)=ex+y+e-(x+y)-ex-y-e-(x-y)=g(x+y)-g(x-y)=4.同理可得g(x)g(y)=g(x+y)+g(x-y)=8.解方程组,得,∴==3.8.若a>1,b>0,ab+a-b=2,ab>1,则ab-a-b=________.解析(ab+a-b)2=(ab)2+(a-b)2+2=8,∴(ab)2+(a-b)2=6,(ab-a-b)2=(ab)2+(a-b)2-2=6-2=4,∴ab>1,∴a-b=<1,∴ab-a-b>0,∴ab-a-b=2.答案29.设α、β为方程2x2+3x+1=0的两个根,则()α+β=________.答案810.已知m=(-1)-1,n=(+1)-1,那么(m-1)-1+(n+1)-1=______.解析∵m==+1,n==-1,∴(m-1)-1+(n+1)-1=()-1+()-1=.答案12.已知a2x=+1,求的值.解令ax=t,则t2=+1,∴===t2+t-2-1=t2+-1=+1+-1=+1+-1-1=2-1.