§1归纳与类比1.2类比推理1.下列平面图形中可作为空间平行六面体类比对象的是().A.三角形B.梯形C.平行四边形D.矩形答案C2.下面几种推理是类比推理的是().A.因为三角形的内角和是180°×(3-2),四边形的内角和是180°×(4-2)…,,所以n边形的内角和是180°×(n-2)B.由平面三角形的性质,推测空间四面体的性质C.某校高二年级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员D.4能被2整除,6能被2整除,8能被2整除,所以偶数能被2整除答案B3.如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色().A.白色B.黑色C.白色可能性大D.黑色可能性大解析由图知,三白两黑周而复始相继排列, 36÷5=7余1,∴第36颗珠子的颜色与第1颗珠子的颜色相同,即白色.答案A4“”.对于平面几何中的命题夹在两平行线之间的平行线段相等,在立体几何中,类比上述命题,可以得到命题__________________________________________________________________________________________.答案夹在两平行平面间的平行线段相等5.平面内正三角形有很多性质,如三条边相等.类似地写出空间正四面体的两条性质:①__________________________________________________________;②__________________________________________________________.答案①三个侧面与底面构成的二面角相等②四个面都全等(答案不唯一)6.就任一等差数列{an},计算a7+a10和a8+a9,a10+a40和a20+a30,你发现了什么一般规律?能把你发现的规律作一般化的推广吗?从等差数列和函数之间的联系角度分析这个问题.在等比数列中会有怎样的类似的结论?解设等差数列{an}的公差为d,则an=a1+(n-1)d,从而a7=a1+6d,a10=a1+9d,a8=a1+7d,a9=a1+8d.所以a7+a10=2a1+15d,a8+a9=2a1+15d,可得a7+a10=a8+a9.同理a10+a40=a20+a30.由此猜想,任一等差数列{an},若m,n,p,q∈N+且m+n=p+q,则有am+an=ap+aq成立.类比等差数列,可得等比数列{an}的性质:若m,n,p,q∈N+且m+n=p+q,则有am·an=ap·aq成立.7.已知扇形的弧长为l,半径为r,类比三角形的面积公式S=,可推知扇形面积公式S扇等于().A.B.C.D.不可类比解析我们将扇形的弧类比为三角形的底边,则高为扇形的半径r,∴S扇=lr.答案C8.三角形的面积为S=(a+b+c)r,a、b、c为三角形的边长,r为三角形内切圆的半径,利用类比推理可以得出四面体的体积为().A.V=abcB.V=ShC.V=(S1+S2+S3+S4)r,(S1、S2、S3、S4为四个面的面积,r为内切球的半径)D.V=(ab+bc+ac)h,(h为四面体的高)解析△ABC的内心为O,连结OA、OB、OC,将△ABC分割为三个小三角形,这三个小三角形的高都是r,底边长分别为a、b、c;类比:设四面体ABCD的内切球球心为O,连结OA、OB、OC、OD,将四面体分割为四个以O为顶点,以原来面为底面的四面体,高都为r,所以有V=(S1+S2+S3+S4)r.答案C9.设△ABC的三边长分别为a,b,c,△ABC的面积为S,则△ABC的内切圆半径为r=.将此结论类比到空间四面体:设四面体S-ABC的四个面的面积分别为S1,S2,S3,S4,体积为V,则四面体的内切球半径为r=________.答案10“”“”.类比等差数列的定义,写出等和数列的定义,并解答下列问题:已知数列{an}是等和数列,且a1=2,公和为5,那么a18=________,这个数列的前n项和Sn的计算公式为________.“”解析定义等和数列:在一个数列中,从第二项起每一项与它前一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.由上述定义,得an=故a18=3.从而Sn=答案3Sn=11.观察:①tan10°·tan20°+tan20°·tan60°+tan60°·tan10°=1,②tan5°·tan10°+tan10°·tan75°+tan75°·tan5°=1,由以上两式成立能得到一个从特殊到一般的推广,此推广是什么?并证明你的推广.解观察得到10°+20°+60°=90°,10°+75°+5°=90°,猜测推广式子为:若α+β+γ=90°,且α,β,γ均不为kπ+,(k∈Z),则tanαtanβ+tanβtanγ+tanγtanα=1.证...