电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

解三角形,知识点汇总情况和典型例题VIP免费

解三角形,知识点汇总情况和典型例题_第1页
1/10
解三角形,知识点汇总情况和典型例题_第2页
2/10
解三角形,知识点汇总情况和典型例题_第3页
3/10
标准文档实用文案解三角形的必备知识和典型例题一、知识必备:1.直角三角形中各元素间的关系:在△ABC中,C=90°,AB=c,AC=b,BC=a。(1)三边之间的关系:a2+b2=c2。(勾股定理)(2)锐角之间的关系:A+B=90°;(3)边角之间的关系:(锐角三角函数定义):sinA=cosB=ca,cosA=sinB=cb,tanA=ba。2.斜三角形中各元素间的关系:在△ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。(1)三角形内角和:A+B+C=π。(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等RCcBbAa2sinsinsin(R为外接圆半径)(3)余弦定理:三角形任何一边的平方等于另两边平方的和减去其与它们夹角的余弦的积的两倍a2=b2+c2-2bccosA;b2=c2+a2-2cacosB;c2=a2+b2-2abcosC。3.三角形的面积公式:(1)S=21aha=21bhb=21chc(ha、hb、hc分别表示a、b、c上的高);(2)S=21absinC=21bcsinA=21acsinB=Rabc4=2R2sinAsinBsinC4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角.第2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。(1)角的变换因为在△ABC中,A+B+C=π,所以sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC。22sin2cos,2cos2sinCBACBA;(2)判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.6.求解三角形应用题的一般步骤:(1)分析:分析题意,弄清已知和所求;(2)建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图;(3)求解:正确运用正、余弦定理求解;(4)检验:检验上述所求是否符合实际意义。二、典例解析题型1:正、余弦定理例1.(1)在ABC中,已知032.0A,081.8B,42.9acm,解三角形;(2)在ABC中,已知20acm,28bcm,040A,解三角形(角度精确到01,边长精确到1cm)。解:(1)根据三角形内角和定理,0180()CAB000180(32.081.8)066.2;根据正弦定理,00sin42.9sin81.880.1()sinsin32.0aBbcmA;根据正弦定理,00sin42.9sin66.274.1().sinsin32.0aCccmA(2)根据正弦定理,0sin28sin40sin0.8999.20bABa因为00<B<0180,所以064B,或0116.B①当064B时,00000180()180(4064)76CAB,00sin20sin7630().sinsin40aCccmA②当0116B时,00000180()180(40116)24CAB,00sin20sin2413().sinsin40aCccmA点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器题型2:三角形面积例2.在ABC中,sincosAA22,AC2,3AB,求Atan的值和ABC的面积。3解法一:先解三角方程,求出角A的值。.21)45cos(,22)45cos(2cossinAAAA又0180A,4560,105.AAooo13tantan(4560)2313Aoo,.46260sin45cos60cos45sin)6045sin(105sinsinASACABAABC1212232643426sin()。解法二:由sincosAA计算它的对偶关系式sincosAA的值。sincosAA22①21(sincos)212sincos20180,sin0,cos0.1(sin2)2AAAAAAAAooQ另解23cossin21)cos(sin2AAAA,sincosAA62②①+②得sinA264。①-②得cosA264。从而sin264tan23cos426AAA。以下解法略去。点评:本小题主要考查三角恒等变形、三角形面积公式等基本知识,着重数学考查运算能力,是一道三角的基础试题。两种解法比较起来,你认为哪一种解法比较简单呢?4题型3:三角形中的三角恒等变换问题例3.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边长,已知a、b、c成等比数列,且a2-c2=ac-bc,求∠A的大小及cBbsin的值。分析:因给出的是a、b、c之间的等量关系,要求∠A,需找∠A与三边的关系,故可用余弦定理。由b2=ac可变形为cb2=a...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

解三角形,知识点汇总情况和典型例题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部