常考问题15空间中的平行与垂直[真题感悟]1.(·江苏卷)如图,在三棱柱A1B1C1ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥FADE的体积为V1,三棱柱A1B1C1ABC的体积为V2,则V1∶V2=______.解析设三棱锥F-ADE的高为h,则==答案1∶242.(·江苏卷)如图,在三棱锥中S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.证明(1)由AS=AB,AF⊥SB知F为SB中点,则EF∥AB,FG∥BC,又EF∩FG=F,因此平面EFG∥平面ABC.(2)由平面SAB⊥平面SBC,且AF⊥SB,知AF⊥平面SBC,则AF⊥BC.又BC⊥AB,AF∩AB=A,则BC⊥平面SAB,因此BC⊥SA.[考题分析]高考对本内容的考查主要有:(1)主要考查空间概念,空间想象能力,点线面位置关系判断,表面积与体积计算等,A级要求(2)主要考查线线、线面、面面平行与垂直的证明,B级要求