常考问题9数列的综合应用[真题感悟]1.(·江苏卷)函数y=x2(x>0)的图象在点(ak,a)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=________.解析在点(ak,a)处的切线方程为:y-a=2ak(x-ak),当y=0时,解得x=,所以ak+1=,故{an}是a1=16,q=的等比数列,即an=16×n-1,∴a1+a3+a5=16+4+1=21.答案212.(·湖北卷)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.解析法一设自上第一节竹子容量为a1,则第九节容量为a9,且数列{an}为等差数列.a1+a2+a3+a4=3,a7+a8+a9=4,即4a5-10d=3,①3a5+9d=4,②联立①②解得a5=.法二设自上第一节竹子容量为a1,依次类推,数列{an}为等差数列.又a1+a2+a3+a4=4a1+6d=3,a7+a8+a9=3a1+21d=4.解得a1=,d=,∴a5=a1+4d=+4×=.答案3.(·江苏卷)在正项等比数列{an}中,a5=,a6+a7=3.则满足a1+a2+…+an>a1a2…an的最大正整数n的值为________.解析由已知条件得q+q2=3,即q2+q-6=0,解得q=2,或q=-3(舍去),an=a5qn-5=×2n-5=2n-6,a1+a2+…+an=(2n-1),a1a2…an=2-52-42-3…2n-6=2,由a1+a2+…+an>a1a2…an,可知2n-5-2-5>2,由2n-5>2,可求得n的最大值为12,而当n=13时,28-2-5<213,所以n的最大值为12.答案124.(·新课标全国Ⅱ卷)等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为________.解析由已知解得a1=-3,d=,那么nSn=n2a1+d=-,由于函数f(x)=-在x=处取得极小值也是最小值,因而检验n=6时,6S6=-48,而n=7时,7S7=-49.答案-49[考题分析]高考对本内容的考查主要有:(1)通过适当的代数变形后,转化为等差数列或等比数列的问题.(2)求数列的通项公式及其前n项和的基本的几种方法.(3)数列与函数、不等式的综合问题.