常考问题19几何证明选讲[真题感悟]1.(·江苏卷)如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC=2OC.求证:AC=2AD.证明连接OD.因为AB和BC分别与圆O相切于点D,C,所以∠ADO=∠ACB=90°.又因为∠A=∠A,所以Rt△ADO∽Rt△ACB.所以=.又BC=2OC=2OD,故AC=2AD.2.(·江苏卷)如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.证明连接OD,因为BD=DC,O为AB的中点,所以OD∥AC,于是∠ODB=∠C.因为OB=OD,所以∠ODB=∠B于是∠B=∠C.因为点A,E,B,D都在圆O上,且D,E为圆O上位于AB异侧的两点,所以∠E和∠B为同弧所对的圆周角,故∠E=∠B.所以∠E=∠C.[考题分析]高考对本内容的考查主要有:(1)三角形及相似三角形的判定与性质;(2)圆的相交弦定理,切割线定理;(3)圆内接四边形的性质与判定;(4)相交弦定理,本内容考查属B级要求.