中考冲刺:动手操作与运动变换型问题(提高)中考冲刺:动手操作与运动变换型问题(提高)一、选择题1.(2020春•抚州期末)将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个圆形小洞后展开铺平得到的图形是()A.B.C.D.2.(2020•邢台校级三模)一张正方形的纸片,如图1进行两次对折,折成一个正方形,从右下角的顶点,沿斜虚线剪去一个角剪下的实际是四个小三角形,再把余下的部分展开,展开后的这个图形的内角和是多少度?()A.1080°B.360°C.180°D.900°3.如图,把矩形ABCD对折,折痕为MN(图甲),再把B点叠在折痕MN上的B′处.得到Rt△AB′E(图乙),再延长EB′交AD于F,所得到的△EAF是()A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形4.如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是()A、B、C、D、二、填空题5.如图(1)是一个等腰梯形,由6个这样的等腰梯形恰好可以拼出如图(2)所示的一个菱形.对于图(1)中的等腰梯形,请写出它的内角的度数或腰与底边长度之间关系的一个正确结论:______.6.如图,△ABC中,∠BAC=600,∠ABC=450,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为___________7.(2020•太仓市模拟)如图①,在四边形ABCD中,AD∥BC,∠C=90°,CD=6cm.动点Q从点B出发,以1cm/S的速度沿BC运动到点C停止,同时,动点P也从B点出发,沿折线B→A→D运动到点D停止,且PQ⊥BC.设运动时间为此资料由网络收集而来,如有侵权请告知上传者立即删除。资料共分享,我们负责传递知识。t(s),点P运动的路程为y(cm),在直角坐标系中画出y关于t的函数图象为折线段OE和EF(如图②).已知点M(4,5)在线段OE上,则图①中AB的长是______cm.三、解答题8.阅读下列材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图(1)所示,将它们分割后拼接成一个新的正方形.他的做法是:按图(2)所示的方法分割后,将三角形纸片①绕AB的中点D旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题:(1)现有5个形状、大小相同的矩形纸片,排列形式如图(3)所示.请将其分割后拼接成一个平行四边形.要求:在图(3)中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图(4),在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ.请在图(4)中探究平行四边形MNPQ面积的大小(画图并直接写出结果).9.如图(a),把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸…….已知标准纸的短边长为a.(1)如图(b),把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B′处,铺平后得折痕AE;第二步将长边AD与折痕AE对齐折叠,点D正好与点E重合,铺平后得折痕AF;则AD:AB的值是________,AD,AB的长分别是________,________;(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值;(3)如图(c),由8个大小相等的小正方形构成“L”型图案,它的4个顶点E,F,G,H分别在“16开”纸的边AB,BC,CD,DA上,求DG的长;(4)已知梯形MNPQ中,MN∥PQ,∠M=90°,MN=MQ=此资料由网络收集而来,如有侵权请告知上传者立即删除。资料共分享,我们负责传递知识。2PQ,且四个顶点M,N,P,Q都在“4开”纸的边上,请直接写出两个符合条件且大小不同的直角梯形的面积.10.操作与探究(1)图(a)是一块直角三角形纸片.将该三角形纸片按图中方法折叠,点A与点C重合,DE为折痕.试证明△CBE是等腰三角形;(2)再将图(b)中的△CBE沿对称轴EF折叠(如图(b)).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你...