电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

直线与平面平行的判定和性质经典练习及详细答案VIP免费

直线与平面平行的判定和性质经典练习及详细答案_第1页
1/8
直线与平面平行的判定和性质经典练习及详细答案_第2页
2/8
直线与平面平行的判定和性质经典练习及详细答案_第3页
3/8
直线、平面平行的判定及其性质1.下列命题中,正确命题的是④.①若直线l上有无数个点不在平面内,则l∥;②若直线l与平面平行,则l与平面内的任意一条直线都平行;③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线l与平面平行,则l与平面内的任意一条直线都没有公共点.2.下列条件中,不能判断两个平面平行的是(填序号).①一个平面内的一条直线平行于另一个平面②一个平面内的两条直线平行于另一个平面③一个平面内有无数条直线平行于另一个平面④一个平面内任何一条直线都平行于另一个平面答案①②③3.对于平面和共面的直线m、n,下列命题中假命题是(填序号).①若m⊥,m⊥n,则n∥②若m∥,n∥,则m∥n③若m,n∥,则m∥n④若m、n与所成的角相等,则m∥n答案①②④4.已知直线a,b,平面,则以下三个命题:①若a∥b,b,则a∥;②若a∥b,a∥,则b∥;③若a∥,b∥,则a∥b.其中真命题的个数是.答案05.直线a//平面M,直线bM,那么a//b是b//M的条件.A.充分而不必要B.必要而不充分C.充要D.不充分也不必要6.能保证直线a与平面平行的条件是A.B.C.D.且7.如果直线a平行于平面,则A.平面内有且只有一直线与a平行B.平面内无数条直线与a平行C.平面内不存在与a平行的直线D.平面内的任意直线与直线a都平行8.如果两直线a∥b,且a∥平面,则b与的位置关系A.相交B.C.D.或9.下列命题正确的个数是10.(1)若直线l上有无数个点不在平面α内,则l∥α(2)若直线l与平面α平行,则l与平面α内的任意一直线平行(3)两条平行线中的一条直线与一个平面平行,那么另一条也与这个平面平行(4)若一直线a和平面α内一直线b平行,则a∥αA.0个B.1个C.2个D.3个11.b是平面α外的一条直线,下列条件中可得出b∥α是A.b与α内的一条直线不相交B.b与α内的两条直线不相交C.b与α内的无数条直线不相交D.b与α内的所有直线不相交12.已知两条相交直线a、b,a∥平面α,则b与α的位置关系A.b∥αB.b与α相交C.bαD.b∥α或b与α相交13.如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.解SG∥平面DEF,证明如下:方法一:三角形中位线连接CG交DE于点H,如图所示. DE是△ABC的中位线,∴DE∥AB.在△ACG中,D是AC的中点,且DH∥AG.∴H为CG的中点.∴FH是△SCG的中位线,∴FH∥SG.又SG平面DEF,FH平面DEF,∴SG∥平面DEF.方法二:平面平行的性质 EF为△SBC的中位线,∴EF∥SB. EF平面SAB,SB平面SAB,∴EF∥平面SAB.同理可证,DF∥平面SAB,EF∩DF=F,∴平面SAB∥平面DEF,又SG平面SAB,∴SG∥平面DEF.14.如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是BC、CC1、C1D1、A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D;(3)平面BDF∥平面B1D1H.证明平行四边形的性质,平行线的传递性(1)如图所示,取BB1的中点M,易证四边形HMC1D1是平行四边形,∴HD1∥MC1.又 MC1∥BF,∴BF∥HD1.(2)取BD的中点O,连接EO,D1O,则OEDC,又D1GDC,∴OED1G,∴四边形OEGD1是平行四边形,∴GE∥D1O.又D1O平面BB1D1D,∴EG∥平面BB1D1D.(3)由(1)知D1H∥BF,又BD∥B1D1,B1D1、HD1平面HB1D1,BF、BD平面BDF,且B1D1∩HD1=D1,DB∩BF=B,∴平面BDF∥平面B1D1H.15.如图所示,在三棱柱ABC—A1B1C1中,M、N分别是BC和A1B1的中点.求证:MN∥平面AA1C1C.证明方法一:平行四边形的性质设A1C1中点为F,连接NF,FC, N为A1B1中点,∴NF∥B1C1,且NF=B1C1,又由棱柱性质知B1C1BC,又M是BC的中点,∴NFMC,∴四边形NFCM为平行四边形.∴MN∥CF,又CF平面AA1C1,MN平面AA1C1,∴MN∥平面AA1C1C.方法二:三角形中位线的性质连接AM交C1C于点P,连接A1P, M是BC的中点,且MC∥B1C1,∴M是B1P的中点,又 N为A1B1中点,∴MN∥A1P,又A1P平面AA1C1,MN平面AA1C1,∴MN∥平面AA1C1C.方法三:平面平行的性质设B1C1中点为Q,连接NQ,MQ, M、Q是BC、B1C1的中点,∴MQCC1,又CC1平面AA1C1C,MQ平面AA1C1C,∴MQ∥平面AA1C1C. N、Q是A1B1、B1C1的中点,∴NQA1C1,又A1C1平面AA1C1C,NQ平面AA1C1C...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

直线与平面平行的判定和性质经典练习及详细答案

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部