专题2.6欲证不等恒成立差值函数求值域【题型综述】利用导数解决不等式恒成立问题的策略:构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.具体做法如下:首先构造函数,利用导数研究函数的单调性,求出最值,进而得出相应含参不等式,从而求出参数的取值范围,也可以分离变量,构造函数,直接把问题转化为函数的最值问题.证明,时,可以构造函数,如果,则在上是减函数,同时若,由减函数的定义可知,当时,有,即证明.【典例指引】例1.已知函数,为其导函数.(1)设,求函数的单调区间;(2)若,设,为函数图象上不同的两点,且满足,设线段中点的横坐标为证明:.【思路引导】(1)求出函数的导数,通过讨论的范围,得增区间,得减区间即可;(2)问题转化为证明令,根据函数单调性证明即可.(2)法一:,故在定义域上单调递增.只需证:,即证(*)注意到不妨设.令,则,从而在上单减,故,即得(*)式.法二:(2)故在定义域上单调递增.注意到且故,且等号仅在处取到.所以与图象关系如下:取,则显然有,从而,另外由三次函数的中心对称性可知,则有.点评:本题主要考查利用导数研究函数的单调性、分类讨论思想及不等式证明问题.属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.例2.已知定义域为的函数存在两个零点.(1)求实数的取值范围;(2)若,求证:.【思路引导】(1)分离参数得,借助函数的图象进行求解;(2)由于,则在区间上单调递增,,故只需证明即可.由题知且,不妨设,则,构造,只需证明即可,利用导数的知识可求解.又,∴,又,∴,即,∴, 在区间上单调递增,∴,得证.点评:解答时注意以下两点:(1)涉及已知函数零点的个数求参数的问题,可通过分析所给函数的特点采用分离参数的方法利用数形结合求解.(2)比较大小时,可通过构造函数,利用函数的单调性和函数值的大小关系处理,在解题中多次构造函数处理问题.例3.已知函数.(1)求函数的单调区间;(2)若关于的不等式恒成立,证明:且.【思路引导】(1)求导,令和,求得函数单调区间(2)构造函数令,求导后分类讨论,利用单调性证明.点评:关于含参量恒成立问题有两种方法,分离含参量和带参量计算,本题构造新函数,带有参量一起求导,判定新函数的单调性,求得最大值时恒小于或等于零,即可证得结论.【同步训练】1.设函数f(x)=lnx+ax2+x+1.(I)a=﹣2时,求函数f(x)的极值点;(Ⅱ)当a=0时,证明xex≥f(x)在(0,+∞)上恒成立.【思路引导】(1)求导数判断函数的单调性,通过单调性求极值点;(2)当a=0时构造函数F(x)=xex﹣f(x)=xex﹣lnx﹣x﹣1,(x>0),只要证明F(x)≥=0即可.(Ⅱ)证明:当a=0时,f(x)=lnx+x+1令F(x)=xex﹣f(x)=xex﹣lnx﹣x﹣1,(x>0),则F′(x)=•(xex﹣1),令G(x)=xex﹣1,则G′(x)=(x+1)ex>0,(x>0),∴函数G(x)在(0,+∞)递增,又G(0)=﹣1<0,G(1)=e﹣1>0,∴存在唯一c∈(0,1)使得G(c)=0,且F(x)在(0,c)上单调递减,在(c,+∞)上单调递增,故F(x)≥F(c)=c•ec﹣lnc﹣c﹣1,由G(c)=0,得c•ec﹣1=0,得lnc+c=0,∴F(c)=0,∴F(x)≥F(c)=0,从而证得xex≥f(x).点评:在本题(Ⅱ)的解答中,为了求F(x)的最小值,通过求导得到F′(x)=•(xex﹣1),不容易判断F(x)的单调性,故构造G(x)=xex﹣1,采用二次求导的方法,在求G(x)零点的过程中遇到了零点不可求的问题,此类问题的解法是利用G(x)的单调性和零点存在定理,判断零点所在的范围,然后理通过整体代换的方法求函数F(x)的最值,这是解决函数综合问题中常用的一种方法.2.已知函数与.(1)若曲线与直线恰好相切于点,求实数的值;(2)当时,恒成立,求实数的取值范围;(3)求证:...