(四)数列1.(2017届湖南省长沙市雅礼中学模拟)已知数列{an}中,a1=1,a3=9,且an=an-1+λn-1(n≥2,n∈N*).(1)求λ的值及数列{an}的通项公式;(2)设bn=(-1)n(an+n),且数列{bn}的前2n项和为S2n,求S2n.解(1)∵a1=1,a3=9,且an=an-1+λn-1(n≥2,n∈N*),∴a2=2λ,a3=5λ-1=9,解得λ=2,∴an-an-1=2n-1(n≥2,n∈N*),∴an=(2n-1)+(2n-3)+…+3+1==n2.(2)bn=(-1)n(an+n)=(-1)n(n2+n),b2n-1+b2n=-[(2n-1)2+(2n-1)]+[(2n)2+2n]=4n,S2n=4×=2n2+2n.2.(2017·河北省衡水中学二模)已知数列{an}满足a1=1,=+2,n∈N*.(1)求数列{an}的通项公式;(2)设以2为公比的等比数列{bn}满足4log2bn·log2bn+1=an+12n+11(n∈N*),求数列{bn-log2bn}的前n项和Sn.解(1)由题意知,数列{}是以2为首项,2为公差的等差数列,∴=2+2(n-1)=2n,故an=4n2-3.(2)设等比数列{bn}的首项为b1,则bn=b1×2n-1,依题意有4log2bn·log2bn+1=4log2(b1×2n-1)·log2(b1×2n)=4(log2b1+n-1)(log2b1+n)=4(log2b1)2-4log2b1+4×(2log2b1-1)n+4n2=4n2+12n+8,即解得log2b1=2,b1=4,故bn=4×2n-1=2n+1.∵bn-log2bn=2n+1-(n+1),∴Sn=-=2n+2-4-.3.已知数列{an}的前n项和为Sn,满足an=+2n-2,n∈N*,且S2=6.(1)求数列{an}的通项公式;(2)证明:+++…+<.(1)解由an=+2n-2,得a2=+2=5,∴a1=S2-a2=1.由an=+2n-2,得Sn=nan-2n2+2n,∴Sn-1=(n-1)an-1-2(n-1)2+2(n-1),n≥2,∴an=Sn-Sn-1=nan-(n-1)an-1-4n+4,即(n-1)an=(n-1)an-1+4(n-1),∴an=an-1+4,即数列{an}是首项为1,公差为4的等差数列,∴an=1+4(n-1)=4n-3.(2)证明由(1)得an=4n-3,则Sn=2n2-n.方法一===2,当n=1时,=1<成立,当n≥2时,+++…+=1+2+2+…+2=1++2+2+…+2+2<1+=,∴+++…+<.方法二当n=1时,=1<成立,当n=2时,+=1+<成立,当n≥3时,=<=-,∴+++…+<1++++…+=-<,∴+++…+<.4.(2017届南京、盐城模拟)已知数列{an}的前n项和为Sn,数列{bn},{cn}满足(n+1)bn=an+1-,(n+2)cn=-,其中n∈N*.(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列.(1)解因为{an}是公差为2的等差数列,所以an=a1+2(n-1),=a1+n-1,从而(n+2)cn=-(a1+n-1)=n+2,即cn=1.(2)证明由(n+1)bn=an+1-,得n(n+1)bn=nan+1-Sn,(n+1)(n+2)bn+1=(n+1)an+2-Sn+1,两式相减,并化简得an+2-an+1=(n+2)bn+1-nbn.从而(n+2)cn=-=-[an+1-(n+1)bn]=+(n+1)bn=+(n+1)bn=(n+2)(bn+bn+1),因此cn=(bn+bn+1).因为对一切n∈N*,有bn≤λ≤cn,所以λ≤cn=(bn+bn+1)≤λ,故bn=λ,cn=λ.所以(n+1)λ=an+1-,①(n+2)λ=(an+1+an+2)-,②由②-①,得(an+2-an+1)=λ,即an+2-an+1=2λ.故an+1-an=2λ(n≥2).又2λ=a2-=a2-a1,则an+1-an=2λ(n≥1).所以数列{an}是等差数列.5.(2017届天津市耀华中学模拟)各项均为正数的数列{an}的前n项和为Sn,且满足a2=4,a=6Sn+9n+1,n∈N*,各项均为正数的等比数列{bn}满足b1=a1,b3=a2.(1)求数列{an},{bn}的通项公式;(2)若cn=(3n-2)·bn,数列{cn}的前n项和为Tn.①求Tn;②若对任意n≥2,n∈N*,均有(Tn-5)m≥6n2-31n+35恒成立,求实数m的取值范围.解(1)∵a=6Sn+9n+1,∴a=6Sn-1+9(n-1)+1,∴a-a=6an+9(n≥2),∴a=(an+3)2.又∵数列{an}各项均为正数,∴an+1=an+3(n≥2).∴数列{an}从a2开始成等差数列,又a2=4,42=6a1+9+1,∴a1=1,∴a2-a1=3,∴{an}是首项为1,公差为3的等差数列,∴an=3n-2.∵b1=1,b3=4,∴bn=2n-1.(2)cn=(3n-2)·2n-1,①Tn=1·20+4·21+…+(3n-2)·2n-1,2Tn=1·21+4·22+…+(3n-2)·2n,∴两式相减得-Tn=1+3(21+22+…+2n-1)-(3n-2)·2n=1+6(2n-1-1)-(3n-2)·2n,∴Tn=(3n-5)·2n+5.②(3n-5)·2n·m≥6n2-31n+35恒成立,∴m≥==,即m≥恒成立,设kn=,kn+1-kn=-=,当n≤4时,kn+1>kn,当n≥5时,kn+1