第三章3.23.2.11.a,b为实数,设z1=2+ai,z2=b+i,当z1+z2=0时,则复数a+bi为(D)A.1+iB.2+iC.3D.-1-2i[解析]∵z1=2+ai,z2=b+i,∴z1+z2=2+ai+(b+i)=0,∴(2+b)+(a+1)i=0,∴a=-1,b=-2,∴a+bi=-1-2i.故选D.2.已知复数z1=-i和复数z2=cos60°+isin60°,则z1+z2等于(A)A.1B.-1C.-iD.+i3.[(a-b)-(a+b)i]-[(a+b)-(a-b)i]等于(A)A.-2b-2biB.-2b+2biC.-2a-2biD.-2a-2ai[解析]原式=[(a-b)-(a+b)]+[-(a+b)+(a-b)]i=-2b-2bi.4.复数(1-i)-(2+i)+(4-i)+3i=__3__.[解析](1-i)-(2+i)+(4-i)+3i=1-i-2-i+4-i+3i=(1-2+4)+(-i-i-i+3i)=3.5.(1)已知复数z满足z+1-3i=5-2i,求z;(2)已知复数z满足|z|+z=1+3i,求z.[解析](1)解法一:设z=x+yi(x,y∈R),∵z+1-3i=5-2i,∴x+yi+(1-3i)=5-2i,即x+1=5且y-3=-2,解得x=4,y=1,∴z=4+i.解法二:∵z+1-3i=5-2i,∴z=(5-2i)-(1-3i)=4+i.(2)设z=x+yi(x,y∈R),则|z|=,又|z|+z=1+3i,∴+x+yi=1+3i,由复数相等的定义得,解得.所以z=-4+3i.