2017届高考数学二轮复习第一部分专题篇专题三数列第一讲等差数列、等比数列课时作业文1.在数列{an}中,已知a1+a2+…+an=2n-1,则a+a+…+a等于()A.(2n-1)2B.C.4n-1D.解析:设Sn为{an}的前n项和,Sn=a1+a2+…+an=2n-1,当n≥2时,Sn-1=2n-1-1,an=2n-1-(2n-1-1)=2n-1,a=4n-1,当n=1时,a1=1也符合上式,所以a+a+…+a==.答案:D2.(2016·山西四校联考)已知等比数列{an}中,各项都是正数,且a1,a3,2a2成等差数列,则=()A.1+B.1-C.3+2D.3-2解析: a1,a3,2a2成等差数列,∴a3×2=a1+2a2,即a1q2=a1+2a1q,∴q2=1+2q,解得q=1+或q=1-(舍),∴==q2=(1+)2=3+2.答案:C3.(2016·重庆模拟)设等比数列{an}的前6项和S6=6,且1-为a1,a3的等差中项,则a7+a8+a9=()A.-2B.8C.10D.14解析:依题意得a1+a3=2-a2,即S3=a1+a2+a3=2,数列S3,S6-S3,S9-S6成等比数列,即数列2,4,S9-6成等比数列,于是有S9-S6=8,即a7+a8+a9=8,选B.答案:B4.已知数列{an}的首项a1=2,数列{bn}为等比数列,且bn=,若b10b11=2,则a21=()A.29B.210C.211D.212解析:由bn=,且a1=2,得b1==,a2=2b1;b2=,a3=a2b2=2b1b2;b3=,a4=a3b3=2b1b2b3;…;an=2b1b2b3…bn-1,∴a21=2b1b2b3…b20,又{bn}为等比数列,∴a21=2(b1b20)(b2b19)…(b10b11)=2(b10b11)10=211.答案:C5.(2016·湖南东部六校联考)已知Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列,则等于()A.4B.6C.8D.10解析:设数列{an}的公差为d,则S1=a1,S2=2a1+d,S4=4a1+6d,故(2a1+d)2=a1(4a1+6d),整理得d=2a1,所以===8,选C.答案:C6.(2016·大连模拟)在数列{an}中,若a1=2,且对任意正整数m,k,总有am+k=am+ak,则{an}的前n项和Sn=()A.n(3n-1)B.C.n(n+1)D.解析:依题意得an+1=an+a1,即有an+1-an=a1=2,所以数列{an}是以2为首项、2为公差的等差数列,an=2+2(n-1)=2n,Sn==n(n+1),选C.答案:C7.(2016·高考浙江卷)设数列{an}的前n项和为Sn.若S2=4,an+1=2Sn+1,n∈N*,则a1=________,S5=________.解析:先构造等比数列,再进一步利用通项公式求解. an+1=2Sn+1,∴Sn+1-Sn=2Sn+1,∴Sn+1=3Sn+1,∴Sn+1+=3,∴数列是公比为3的等比数列,∴=3.又S2=4,∴S1=1,∴a1=1,∴S5+=×34=×34=,∴S5=121.答案:11218.各项均为正数的等差数列{an}中,a4a9=36,则前12项和S12的最小值为________.解析:S12=6(a1+a12)=6(a4+a9)≥6×2=72,当且仅当a4=a9=6时等号成立.答案:729.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为________.解析:设该女子第一天织布x尺,则=5,得x=,∴前n天所织布的尺数为(2n-1).由(2n-1)≥30,得2n≥187,则n的最小值为8.答案:810.(2016·高考北京卷)已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{an}的通项公式;(2)设cn=an+bn,求数列{cn}的前n项和.解析:(1)设等比数列{bn}的公比为q,则q===3,所以b1==1,b4=b3q=27,所以bn=3n-1(n=1,2,3,…).设等差数列{an}的公差为d.因为a1=b1=1,a14=b4=27,所以1+13d=27,即d=2.所以an=2n-1(n=1,2,3,…).(2)由(1)知an=2n-1,bn=3n-1,因为cn=an+bn=2n-1+3n-1.从而数列{cn}的前n项和Sn=1+3+…+(2n-1)+1+3+…+3n-1=+=n2+.11.已知数列{an}的前n项和为Sn,且Sn=4an-3(n∈N*).(1)证明:数列{an}是等比数列;(2)若数列{bn}满足bn+1=an+bn(n∈N*),且b1=2,求数列{bn}的通项公式.解析:(1)证明:n=1时,a1=4a1-3,解得a1=1.当n≥2时,an=Sn-Sn-1=4an-4an-1,整理得an=an-1,又a1=1≠0,∴{an}是首项为1,公比为的等比数...