专题04数列问题1.(2018新课标全国Ⅰ理科)设为等差数列的前项和,若,,则A.B.C.D.【答案】B【解析】设等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.【名师点睛】该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.2.(2018新课标全国Ⅰ理科)记为数列的前项和,若,则_________.【答案】【名师点睛】该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.3.(2018新课标全国Ⅱ理科)记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.【解析】(1)设{an}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{an}的通项公式为an=2n–9.(2)由(1)得Sn=n2–8n=(n–4)2–16.所以当n=4时,Sn取得最小值,最小值为–16.【名师点睛】数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果;(2)根据等差数列前n项和公式得关于n的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.4.(2018新课标全国Ⅲ理科)等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求.【解析】(1)设的公比为,由题设得.由已知得,解得(舍去),或.故或.(2)若,则.由得,此方程没有正整数解.若,则.由得,解得.综上,.1.等差数列、等比数列一直是高考的热点,尤其是等差数列和等比数列的通项公式、性质、前n项和等为考查的重点,有时会将等差数列和等比数列的通项、前n项和及性质综合进行考查.2.在高考中常出两道客观题或一道解答题,若是以客观题的形式出现,一般一道考查数列的定义、性质或求和的简单题,另一道则是结合其他知识,考查递推数列等的中等难度的题.若在解答题中出现,则一般结合等差数列和等比数列考查数列的通项,前n项和等知识,难度中等.指点1:等差数列及其前项和1.求解等差数列通项公式的方法主要有两种:(1)定义法.(2)前项和法,即根据前项和与的关系求解.2.等差数列前n项和公式的应用方法:根据不同的已知条件选用不同的求和公式,若已知首项和公差,则使用;若已知通项公式,则使用,同时注意与性质“”的结合使用.【例1】已知等差数列满足,,数列满足.(1)求数列、的通项公式;(2)求数列的前项和.【解析】(1)依题意,,即,所以,则,故.因为,所以①,当时,②,①②得,即.当时,满足上式.∴数列的通项公式为.(2)由(1)知,,,记数列的前项和为,的前项和为,则,,故数列的前项和为.指点2:等比数列及其前项和1.求等比数列的通项公式,一般先求出首项与公比,再利用求解.但在某些情况下,利用等比数列通项公式的变形可以简化解题过程.2.当时,若已知,则用求解较方便;若已知,则用求解较方便.【例2】已知等比数列的各项均为正数,且,.(1)求数列的通项公式;(2)若数列满足:,求数列的前项和.指点3:数列的综合应用1.解决等差数列与等比数列的综合问题时,若同一数列中部分项成等差数列,部分项成等比数列,则要把成等差数列和成等比数列的项分别抽出来,研究这些项与序号之间的关系;若两个数列是通过运算综合在一起的,则要把两个数列分开求解.2.数列常与函数、不等式结合起来考查,其中数列与不等式的结合是考查的热点,注意知识之间的灵活运用.【例3】设等差数列的前项和为,等比数列的前项和为,已知,,.(1)若,求数列的通项公式;(2)若,且,求.(2)因为,所以,解得或,又,所以,因为,所以,即,所以.【例4】已知公差大于零的等差数列的前项和为,且,.(1)求数列的通项公式;(2)若数列是等差数列,且,求非零常数的值.(3)设,为数列的...