数学选修4-5不等式选讲[提高训练C组]一、选择题1.若log2xy,则xy的最小值是()A.2233B.3323C.233D.3222.,,abcR,设abcdSabcbcdcdadab,则下列判断中正确的是()A.01SB.12SC.23SD.34S3.若1x,则函数21161xyxxx的最小值为()A.16B.8C.4D.非上述情况4.设0ba,且22211Pab,211Qab,Mab,2abN,222abR,则它们的大小关系是()A.PQMNRB.QPMNRC.PMNQRD.PQMRN二、填空题1.函数23(0)1xyxxx的值域是.2.若,,abcR,且1abc,则cba的最大值是3.已知1,,1abc,比较abbcca与1的大小关系为.4.若0a,则2211aaaa的最大值为.5.若,,xyz是正数,且满足()1xyzxyz,则()()xyyz的最小值为______。三、解答题用心爱心专心11.设,,abcR,且abc,求证:222333abc2.已知abcd,求证:1119abbccaad3.已知,,abcR,比较333abc与222abbcca的大小。4.求函数3546yxx的最大值。5.已知,,xyzR,且2228,24xyzxyz求证:4443,3,3333xyz数学选修4-5不等式选讲提高训练C组]一、选择题1.A由log2xy得21yx,用心爱心专心2而33322211113332222242xxxxxyxxxx2.Babcdabcbcdcdadab1abcdabcdabcdbcdacdabdabcabcd即1S,aaabcac,cccdaac,bbbcdbd,dddabdb得1accaabccdaacac,1bddbbcddabdbbd即2abcdabcbcdcdadab,得2S,所以12S3.B2116116216811xyxxxxxxx4.AR为平方平均数,它最大二、填空题1.[3,0)233111xyxxxx,10,2,xxx得111xx131030301111yxxxx2.32222(111)(111)()3abcabc3.构造单调函数()()1fxbcxbc,则(1)(1)(1)0fbc,(1)(1)(1)(1)(1)0fbcbc,即11x,()0fx恒成立,所以()()10fabcabc,即1abbcca4.22设221(2)atta,则2221ata,即212ata再令222112(2)yaatttaa,'2102tyt即[2,)t时,y是t的减函数,得2t时,max22y5.22()()()2()2xyyzxyyyzzxyxyzzxyxyzzx三、解答题用心爱心专心31.证明:,,,1ababcRcc22233301,01,,,0ababccc2222333323()()1ababababcccccc,222333abc2.证明:,0,0,0abcdabbccd111111()()()[()()()]adabbccdabbccaabbcca3311133()()()9abbccdabbcca1119abbccaad3.解:取两组数:,,abc与222,,abc,显然333abc是同序和,222abbcca是乱序和,所以333222abcabbcca4.解:函数的定义域为[5,6],且0y3546yxx222234(5)(6)5xxmax5y5.证明:显然2222()()8,8202xyxyxyzxyzz,xy是方程22(8)8200tzxzz的两个实根,由0得443z,同理可得443y,443x用心爱心专心4