电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

全国高中高三数学联赛集训试题VIP免费

全国高中高三数学联赛集训试题_第1页
全国高中高三数学联赛集训试题_第2页
全国高中高三数学联赛集训试题_第3页
全国高中数学联赛集训试题一、选择题(本题满分36分,每小题6分)1、函数f(x)=log1/2(x2-2x-3)的单调递增区间是()。(A)(-∞,-1)(B)(-∞,1)(C)(1,+∞)(D)(3,+∞)2、若实数x,y满足(x+5)2+(y-12)2=142,则x2+y2的最小值为()。(A)2(B)1(C)√3(D)√23、函数f(x)=x/1-2x-x/2()(A)是偶函数但不是奇函数(B)是奇函数但不是偶函数(C)既是偶函数又是奇函数(D)既不是偶函数也不是奇函数4、直线x/4+y/3=1与椭圆x2/16+y2/9=1相交于A,B两点,该椭圆上点P,使得ΔPAB面积等于3,这样的点P共有()。(A)1个(B)2个(C)3个(D)4个5、已知两个实数集合A={a1,a2,…,a100}与B={b1,b2,…,b50},若从A到B的映射f使得B中每个元素都有原象,且f(a1)≤f(a2)≤…≤f(a100)则这样的映射共有()。(A)C50100(B)C4899(C)C49100(D)C49996、由曲线x2=4y,x2=-4y,x=4,x=-4围成的图形绕y轴旋转一周所得旋转体的体积为V1;满足x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的点(x,y)组成的图形绕y轴旋转一周所得旋转体的体积为V2,则()。(A)V1=(1/2)V2(B)V1=(2/3)V2(C)V1=V2(D)V1=2V2二、填空题(本题满分54分,每小题9分)7、已知复数Z1,Z2满足∣Z1∣=2,∣Z2∣=3,若它们所对应向量的夹角为60°,则∣(Z1+Z2)/(Z1+Z2)∣=。8、将二项式(√x+1/(24√x))n的展开式按x的降幂排列,若前三项系数成等差数列,则该展用心爱心专心开式中x的幂指数是整数的项共有个。9、如图,点P1,P2,…,P10分别是四面体顶点或棱的中点,那么在同一平面上的四点组(P1,Pi,Pj,Pk)(1<i<j<k≤10)有个。10、已知f(x)是定义在R上的函数,f(1)=1且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1。若g(x)=f(x)+1-x,则g(2002)=。11、若log4(x+2y)+log4(x-2y)=1,则∣x∣-∣y∣的最小值是。12、使不等式sin2x+acosx+a2≥1+cosx对一切x∈R恒成立的负数a的取值范围是。三、解答题(本题满分60分,每小题20分)13、已知点A(0,2)和抛物线y2=x+4上两点B,C使得AB⊥BC,求点C的纵坐标的取值范围。14、如图,有一列曲线P0,P1,P2……,已知P0所围成的图形是面积为1的等边三角形,Pk+1是对Pk进行如下操作得到:将Pk的每条边三等分,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉(k=0,1,2,)。记Sn为曲线Pn所围成图形的面积。(1)求数列{Sn}的通项公式;(2)求limSn.n→∞用心爱心专心15、设二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0)满足条件:(1)当x∈R时,f(x-4)=f(2-x),且f(x)≥x;(2)当x∈(0,2)时,f(x)≤((x+1)/2)2;(3)f(x)在R上的最小值为0.求最大的m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x。参考答案一、选择题1、x2-2x-3>0有x<-1或x>3,故函数log1/2(x2-2x-3)的定义域为x<-1或x>3。二次函数u=x2-2x-3在(-∞,-1)内单调递减,在(3,+∞)内单调递增。而log1/2u在(0,+∞)上单调递减,所以log1/2(x2-2x-3)在(-∞,-1)单调递增,故选A。用心爱心专心2、(x+5)2+(y-12)2=142是以点C(-5,12)为圆心,半径为14的圆。设P为圆上任一点,则∣OP∣≥∣CP∣-∣OC∣=14-13=1当点C、O、P共线时,等号成立,所以P到点O的最小值为1,故选B。3、函数f(x)的定义域是(-∞,0)∪(0,+∞),当x≠0时,因为f(-x)=(-x)/(1-2-x)-(-x)/2=(-x2x)/(2x-1)+(x/2)=(x+x(2x-1))/(1-2x)+(x/2)=(x/(1-2x))-x+(x/2)=(x/(1-2x))-(x/2)=f(x),所以f(x)为偶函数,显然f(x)不是奇函数,故选A。4、设P1(4cosα,3sinα)(0<α<(π/2)),即点P1在第一象限的椭圆上,如图,考虑四边形P1AOB面积S,S=SΔOAP1+SΔOBP1=(1/2)×4(3sinα)+(1/2)×3(4cosα)=6(sinα+cosα)=6√2sin(α=(π/4)),∴Smax=6√2(此时α+(π/4)). SΔOAB=(1/2)×4×3=6为定值,∴SΔP1AB的最大值为6√2-6. 6√2-6<3,∴点P不可能在直线AB的上方,显然在直线AB的下方有两个点P,故选B。5、不妨设b1<b2<…<b50,将A中元素a1,a2,…,a100按顺序分为非空的50组。定义映射f:A→B,使第i组的元素在f之下的象都是bi(i=1,2,…,50).易知这样的f满足题设要求,每个这样的分组都一一对应满足...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

海博书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部