【大高考】2017版高考数学一轮总复习第6章数列第4节数列求和、数列的综合应用高考AB卷理数列求和1.(2013·全国Ⅱ,3)等比数列{an}的前n项和为Sn.已知S3=a2+10a1,a5=9,则a1=()A.B.-C.D.-解析设公比为q,则由S3=a2+10a1,得a1+a2+a3-a2=10a1,故a3=9a1,所以q2=9.由a5=9,得a1=.答案C2.(2012·大纲全国,5)已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列的前100项和为()A.B.C.D.解析由S5=5a3及S5=15得a3=3,∴d==1,a1=1,∴an=n,==-,所以数列的前100项和T100=1-+-+…+-=1-=,故选A.答案A3.(2015·全国Ⅱ,16)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=____________.解析由题意,得S1=a1=-1,又由an+1=SnSn+1,得Sn+1-Sn=SnSn+1,因为Sn≠0,所以=1,即-=-1,故数列是以=-1为首项,-1为公差的等差数列,得=-1-(n-1)=-n,所以Sn=-.答案-4.(2012·新课标,16)数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为________.解析当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,∴a2k+1+a2k-1=2,∴a2k+3+a2k+1=2,∴a2k-1=a2k+3,∴a1=a5=…=a61.∴a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)==30×61=1830.答案1830数列求和1.(2013·辽宁,14)已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6=________.解析因为x2-5x+4=0的两根为1和4,又数列{an}是递增数列,所以a1=1,a3=4,所以q=2.所以S6==63.答案632.(2016·山东,18)已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.(1)求数列{bn}的通项公式;(2)令cn=,求数列{cn}的前n项和Tn.解(1)由题意知,当n≥2时,an=Sn-Sn-1=6n+5,当n=1时,a1=S1=11,所以an=6n+5.设数列{bn}的公差为d.由即可解得b1=4,d=3,所以bn=3n+1.(2)由(1)知,cn==3(n+1)·2n+1.又Tn=c1+c2+…+cn,得Tn=3×[2×22+3×23+…+(n+1)×2n+1],2Tn=3×[2×23+3×24+…+(n+1)×2n+2].两式作差,得-Tn=3×[2×22+23+24+…+2n+1-(n+1)×2n+2]=3×=-3n·2n+2,所以Tn=3n·2n+2.3.(2015·山东,18)设数列{an}的前n项和为Sn.已知2Sn=3n+3.(1)求{an}的通项公式;(2)若数列{bn}满足anbn=log3an,求{bn}的前n项和Tn.解(1)因为2Sn=3n+3,所以2a1=3+3,故a1=3,当n>1时,2Sn-1=3n-1+3,此时2an=2Sn-2Sn-1=3n-3n-1=2×3n-1,即an=3n-1,所以an=(2)因为anbn=log3an,所以b1=,当n>1时,bn=31-nlog33n-1=(n-1)·31-n.所以T1=b1=;当n>1时,Tn=b1+b2+b3+…+bn=+[1×3-1+2×3-2+…+(n-1)×31-n],所以3Tn=1+[1×30+2×3-1+…+(n-1)×32-n],两式相减,得2Tn=+(30+3-1+3-2+…+32-n)-(n-1)×31-n=+-(n-1)×31-n=-,所以Tn=-,经检验,n=1时也适合.综上可得Tn=-.4.(2015·天津,18)已知数列{an}满足an+2=qan(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列.(1)求q的值和{an}的通项公式;(2)设bn=,n∈N*,求数列{bn}的前n项和.解(1)由已知,有(a3+a4)-(a2+a3)=(a4+a5)-(a3+a4),即a4-a2=a5-a3,所以a2(q-1)=a3(q-1),又因为q≠1,故a3=a2=2,由a3=a1q,得q=2.当n=2k-1(k∈N*)时,an=a2k-1=2k-1=2;当n=2k(k∈N*)时,an=a2k=2k=2.所以,{an}的通项公式为an=(2)由(1)得bn==,n∈N*.设{bn}的前n项和为Sn,则Sn=1×+2×+3×+…+(n-1)×+n×,Sn=1×+2×+3×+…+(n-1)×+n×.上述两式相减得:Sn=1+++…+-=-=2--,整理得,Sn=4-,n∈N*.所以,数列{bn}的前n项和为4-,n∈N*.5.(2014·山东,19)已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(1)求数列{an}的通项公式;(2)令bn=(-1)n-1,求数列{bn}的前n项和Tn.解(1)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+...