2016-2017学年海南省文昌高二(下)第二次段考数学试卷(理科)一、选择题(每题5分,共60分,每小题有且仅有一个正确选项)1.如图茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的平均数为18,乙组数据的中位数为16,则x,y的值分别为()A.18,6B.8,16C.8,6D.18,162.掷一颗骰子一次,设事件A=“出现奇数点”,事件B=“出现3点或4点”,则事件A,B的关系是()A.互斥但不相互独立B.相互独立但不互斥C.互斥且相互独立D.既不相互独立也不互斥3.98与63的最大公约数为a,二进制数110011(2)化为十进制数为b,则a+b=()A.53B.54C.58D.604.阅读如图所示程序框图,为使输出的数据为31,则判断框中应填的是()A.n<4B.n<5C.n<6D.n<75.设随机变量X的分布列为P(X=k)=,k=1,2,3,4,5,则P(<X<)等于()A.B.C.D.6.在二项式(x+)n的展开式中,若前三项系数成等差数列,则展开式中的常数项为()1A.B.7C.16D.287.用4种颜色给正四棱锥的五个顶点涂色,同一条棱的两个顶点涂不同的颜色,则符合条件的所有涂法共有()A.24种B.48种C.64种D.72种8.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10D.159.在区间(0,1)中随机取出两个数,则两数之和不小于的概率是()A.B.C.D.10.甲乙两人进行羽毛球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为,则甲以3:1的比分获胜的概率为()A.B.C.D.11.有4个不同的球,四个不同的盒子,把球全部放入盒内,恰有两个盒不放球,共有()种放法.A.114B.96C.84D.4812.设(2﹣x)5=a0+a1x+a2x2+…+a5x5,那么的值为()A.﹣B.﹣C.﹣D.﹣1二、填空题(每小题5分,共20分)213.已知随机变量X~B(9,),Y=2X﹣1,则D(Y)=.14.在(2x+1)(x﹣1)5的展开式中含x3项的系数是(用数字作答).15.6人分别担任六种不同工作,已知甲不能担任第一个工作,则任意分工时,乙没有担任第二项工作的概率为.16.某宾馆安排A、B、C、D、E五人入住3个房间,每个房间至少住1人,且A、B不能住同一房间,则共有种不同的安排方法(用数字作答).三、解答题(共6小题,满分70分)17.五位同学按下列要求站一横排,分别有多少种不同的站法?(1)甲乙必须相邻(2)甲乙不相邻(3)甲不站中间,乙不站两端(4)甲,乙均在丙的同侧.18.某购物中心为了了解顾客使用新推出的某购物卡的顾客的年龄分布情况,随机调查了100位到购物中心购物的顾客年龄,并整理后画出频率分布直方图如图所示,年龄落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1.(1)求顾客年龄值落在区间[75,85]内的频率;(2)拟利用分层抽样从年龄在[55,65),[65,75)的顾客中选取6人召开一个座谈会,现从这6人中选出2人,求这两人在不同年龄组的概率.19.口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(Ⅰ)求编号和为6的事件发生的概率;(Ⅱ)这种游戏规则公平吗?试说明理由;(Ⅲ)如果甲摸出球后不放回,则游戏对谁有利?20.某公司进行公开招聘,应聘者从10个考题中通过抽签随机抽取3个题目作答,规定至少3答对2道者才有机会进入“面试”环节,小王只会其中的6道.(1)求小王能进入“面试”环节的概率;(2)求抽到小王作答的题目数量的分布列.21.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:x681012y2356(1)请在图中画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+;(3)试根据(2)求出的线性回归方程,预测记忆力为9的同学的判断力.相关公式...