高中数学立体几何中的最值问题海红楼立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。下面举例说明解决这类问题的常用方法。一、运用变量的相对性求最值例1.在正四棱锥S-ABCD中,SO⊥平面ABCD于O,SO=2,底面边长为,点P、Q分别在线段BD、SC上移动,则P、Q两点的最短距离为()A.B.C.2D.1解析:如图1,由于点P、Q分别在线段BD、SC上移动,先让点P在BD上固定,Q在SC上移动,当OQ最小时,PQ最小。过O作OQ⊥SC,在Rt△SOC中,中。又P在BD上运动,且当P运动到点O时,PQ最小,等于OQ的长为,也就是异面直线BD和SC的公垂线段的长。故选B。图1二、定性分析法求最值例2.已知平面α//平面β,AB和CD是夹在平面α、β之间的两条线段。AB⊥CD,AB=3,直线AB与平面α成30°角,则线段CD的长的最小值为______。解析:如图2,过点B作平面α的垂线,垂足为O,连结AO,则∠BAO=30°。过B作BE//CD交平面α于E,则BE=CD。连结AE,因为AB⊥CD,故AB⊥BE。则在Rt△ABE中,BE=AB·tan∠BAE≥AB·tan∠BAO=3·tan30°=。故。图2三、展成平面求最值例3.如图3-1,四面体A-BCD的各面都是锐角三角形,且AB=CD=a,AC=BD=b,AD=BC=c。平面α分别截棱AB、BC、CD、DA于点P、Q、R、S,则四边形PQRS的周长的最小值是()A.2aB.2bC.2cD.a+b+c图3-1解析:如图3-2,将四面体的侧面展开成平面图形。由于四面体各侧面均为锐角三角形,且AB=CD,AC=BD,AD=BC,所以,A与A’、D与D’在四面体中是同一点,且,,A、C、A’共线,D、B、D’共线,。又四边形PQRS在展开图中变为折线S’PQRS,S’与S在四面体中是同一点。因而当P、Q、R在S’S上时,最小,也就是四边形PQRS周长最小。又,所以最小值。故选B。图3-2四、利用向量求最值例4.在棱长为1的正方体ABCD-EFGH中,P是AF上的动点,则GP+PB的最小值为_______。解析:以A为坐标原点,分别以AB、AD、AE所在直线为x,y,z轴,建立如图4所示的空间直角坐标系,则B(1,0,0),G(1,1,1)。根据题意设P(x,0,x),则,,那么图4式子可以看成x轴正半轴上一点(x,0,0)到xAy平面上两点、的距离之和,其最小值为。所以GP+PB的最小值为。