电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学突破热点分层教学专项概率、离散型随机变量及其分布列专题强化训练VIP免费

高考数学突破热点分层教学专项概率、离散型随机变量及其分布列专题强化训练_第1页
1/11
高考数学突破热点分层教学专项概率、离散型随机变量及其分布列专题强化训练_第2页
2/11
高考数学突破热点分层教学专项概率、离散型随机变量及其分布列专题强化训练_第3页
3/11
第1讲概率、离散型随机变量及其分布列[A组夯基保分专练]一、选择题1.(2018·惠州第二次调研)设随机变量ξ服从正态分布N(4,3),若P(ξa+1),则实数a等于()A.7B.6C.5D.4解析:选B.由随机变量ξ服从正态分布N(4,3)可得正态分布密度曲线的对称轴为直线x=4,又P(ξa+1),所以x=a-5与x=a+1关于直线x=4对称,所以a-5+a+1=8,即a=6.故选B.2.(2018·武汉调研)将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球,那么甲盒中恰好有3个小球的概率为()A.310B.25C.320D.14解析:选C.将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球有C36种放法,甲盒中恰好有3个小球有C23种放法,结合古典概型的概率计算公式得所求概率为C23C36=320.故选C.3.小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A=“4个人去的景点不相同”,事件B=“小赵独自去一个景点”,则P(A|B)=()A.29B.13C.49D.59解析:选A.小赵独自去一个景点共有4×3×3×3=108种可能性,4个人去的景点不同的可能性有A44=4×3×2×1=24种,所以P(A|B)=24108=29.4.用1,2,3,4,5组成无重复数字的五位数,若用a1,a2,a3,a4,a5分别表示五位数的万位、千位、百位、十位、个位,则出现a1a4>a5特征的五位数的概率为()A.110B.120C.124D.310解析:选B.1,2,3,4,5可组成A55=120个不同的五位数,其中满足题目条件的五位数中,最大的5必须排在中间,左、右各两个数字只要选出,则排列位置就随之而定,满足条件的五位数有C24C22=6个,故出现a1a4>a5特征的五位数的概率为6120=120.5.(2018·高考全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=()A.0.7B.0.6C.0.4D.0.3解析:选B.由题意知,该群体的10位成员使用移动支付的概率分布符合二项分布,所以DX=10p(1-p)=2.4,所以p=0.6或p=0.4.由P(X=4)<P(X=6),得C410p4(1-p)6<C610p6(1-p)4,即(1-p)2<p2,所以p>0.5,所以p=0.6.6.(2018·贵阳模拟)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥ex,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A.1eB.1e2C.e-1eD.e2-1e2解析:选B.如图,根据题意可知Ω表示的平面区域为正方形BCDO,面积为e2,A表示的区域为图中阴影部分,面积为01(e-ex)dx=(ex-ex)|10=(e-e)-(-1)=1,根据几何概型可知a∈A的概率P=1e2.故选B.二、填空题7.某人在微信群中发了一个7元的“拼手气”红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领到的钱数不少于乙、丙分别领到的钱数的概率是________.解析:利用隔板法将7元分成3个红包,共有C26=15种领法.甲领3元不少于乙、丙分别领到的钱数的分法有3元,3元,1元与3元,2元,2元两种情况,共有A22+1=3种领法;甲领4元不少于乙、丙分别领到的钱数的分法有4元,2元,1元一种情况,共有A22=2种领法;甲领5元不少于乙、丙分别领到的钱数的分法有5元,1元,1元一种情况,共有1种领法,所以甲领到的钱数不少于乙、丙分别领到的钱数的概率是3+2+115=25.答案:258.(2018·唐山模拟)向圆(x-2)2+(y-3)2=4内随机投掷一点,则该点落在x轴下方的概率为________.解析:如图,连接CA,CB,依题意,圆心C到x轴的距离为3,所以弦AB的长为2.又圆的半径为2,所以弓形ADB的面积为12×23π×2-12×2×3=23π-3,所以向圆(x-2)2+(y-3)2=4内随机投掷一点,则该点落在x轴下方的概率P=16-34π.答案:16-34π9.某商场在儿童节举行回馈顾客活动,凡在商场消费满100元者即可参加射击赢玩具活动,具体规则如下:每人最多可射击3次,一旦击中,则可获奖且不再继续射击,否则一直射满3次为止.设甲每次击中的概率为p(p≠0),射击次数为η,若η的均值E(η)>74,则p的取值范围是________.解析:由已知得P(η=1)=p,P(η=2)=(1-p)p,P(η=3)=(1-p)2,则E(η)=p+2(1-p)p+3(1-p)2=p2...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学突破热点分层教学专项概率、离散型随机变量及其分布列专题强化训练

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部