函数的平均变化率》教学设计一、教学内容分析函数的平均变化率是解决函数问题的直观化工具,它一方面反应函数的增减性质,另一方面也反映函数的变化快慢.并且为我们今后导数相关内容的学习以及物理中的变化率学习奠定基础.本节课首先从物理中的变化率引入数学中的变化率,并首先介绍了直线斜率的定义,然后从直线斜率的角度研究了函数的单调性,并给出平均变化率的定义.引导学生会计算一个函数在相应区间内的平均变化率,并利用函数平均变化率证明函数的单调性,最后引导学生理解从函数平均变化率的角度辨析函数图像的变化快慢,借助数形结合解决相关问题.培养学生逻辑推理、直观想象、数据分析等核心素养.二、学情分析学生已有的知识结构是对函数的认识有了一定的积累,从生活和与其他学科的交汇中逐步提高了这方面的能力,在物理学中已经学习过加速度的定义(是速度的变化量与发生这一变化所用时间的比值),抽象概括思想也逐步深入学生心中,转化成了学生自己的知识技能,这些为学好平均变化率奠定扎实的基础.但是由于新教材是在函数单调性这一节给出函数平均变化率的定义,并将函数的平均变化率与单调性联系起来,相关定义和内容较抽象难理解.对于理性思维比较弱的学生,他们极容易在解题时钻牛角尖,因此若能让学生主动参与到平均变化率学习过程中,让学生体会到自己在学“有价值的数学”,就会激发学生的学习数学的兴趣,树立学好数学的自信心.三、设计理念本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习实情,函数平均变化率的教学首先要挖掘其知识背景贴近学生实际;其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。四、教学目标知识与技能:1、掌握直线的斜率公式及三点共线的充要条件;2、理解平均变化率的定义并会计算函数在相应区间上的平均变化率;3、会利用函数的平均变化率证明函数的单调性;4、掌握利用平均变化率判断函数图像问题,辨析函数增减快慢.过程与方法:1、通过动手计算培养学生观察、分析、比较和归纳能力;2、通过对实际问题的探究使学生体会类比、从特殊到一般的数学思想.情感、态度与价值观:1、感受平均变化率广泛存在于日常生活之中,体会数学的博大精深以及学习数学的意义.2、通过具体事例,感受平均变化率广泛存在于日常生活之中,经历运用数学语音描述刻画现实世界的过程.五、教学重点与难点教学重点:1.理解并掌握平均变化率的概念.2.会利用函数平均变化率证明函数单调性.教学难点:对生活现象和物理问题如何作出合理的数学阐释,概括抽象函数的平均变化率.六、教学过程设计【课前准备】1.活动准备:常规分组,进行小组教学及学习活动.2.知识准备:提前预习函数的平均变化率及斜率相关概念.【教学过程】1.引入课题:德国有一位著名的心理学家艾宾浩斯,对人类的记忆牢固程度进行了有关研究.他经过测试,得到了以下一些数据:时间间隔击刚记忆完毕20裔钟后60分钟后8~94^时后1天后2天后6天后一个月后记忆量于(百分比)10058.244.235.833.727.S25.421,1以上数据表明,记忆量y是时间间隔t的函数.艾宾浩斯根据这些数据描绘出了著名的“艾宾浩斯遗忘曲线”,如图.艾滨浩斯提出问题:“艾宾浩斯遗忘曲线”从左至右是逐渐下降的,下降的速度是怎样变化的?该怎样用数学语言来刻画函数的变化快慢?设计意图:利用熟悉的问题激发学生的兴趣与情感,为平均变化率的自然引入提供契机.2.引入物理中的平均变化率:我们在物理中已经学过:变化率是描述变化快慢的量.例如,速度是用来衡量物体运动快慢的,速度等于位移的变化量与发生这一Axv二.At变化所用时间的比值,即加速度是用来衡量速度变化的快慢,加速度等于速度的变化量与发生这一变化所用时间的比值,即Ava=.At设计意图:从学生们已熟知的物理知识角度事先解释一下平均变化率,一方面可以激发学生们的学习热情,也会让学生们感觉这部分知识不那么陌生.3.引入新知:一、直线的斜率(1)定义:给定平面直角坐标系中的任意两点A(x,y),Bx,y,当x丰x时,112212y-y称「A为直线AB的斜率.x-x21(2)若...