-1-一元二次方程本章内容“一元二次方程”是《课程标准》“数与代数”的重要内容,也是方程中重点内容,是学习二次函数等内容的基础,本节是本章的起始内容,主要学习下列三个内容:建立一元二次方程此内容是本节课的难点之一,在后续的内容中将继续学习,为此设计较易的[拓展应用]的例4及其变式题,[课时作业]的第6、7题。1.一元二次方程的概念此内容是本节课的重点,是学习一元二次方程的基础,为此设计[拓展应用]的例1、例3,[当堂检测]的第1、2、4题,[课时作业]的第1—5题。2.一元二次方程的解的含义利用方程解的含义,可求方程中的待定系数,也可由此把二次三项式变形求值,为此设计[拓展应用]的例2,[当堂检测]的第3题,[选做题]和[备选题目]的问题。点击一:一元二次方程的定义一元二次方程的定义:只含有一个未知数,未知数的最高次数是2,且系数不为0,这样的方程叫一元二次方程.针对练习1:下列方程是一元二次方程的有__________。(1)x2+x1-5=0(2)x2-3xy+7=0(3)x+12x=4(4)m3-2m+3=0(5)22x2-5=0(6)ax2-bx=4答案:(5)针对练习2:已知(m+3)x2-3mx-1=0是一元二方程,则m的取值范围是。答案:一元二次方程二次项的系数不等于零。故m≠-3点击二:一元二次方程的一般形式元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,bx是一次项,c是常数项,a是二次项系数,b是一次项系数,c是常数.任何一个一元二次方程都可以通过整理转化成一般形式.由此,对于一个方程从形式上,应先将这个方程进行整理,看是否符合ax2+bx+c=0(a≠0)的一般形式.其中,尤其注意a≠0的条件,有了a≠0的条件,就能说明ax2+bx+c=0是一元二次方程.若不能确定a≠0,并且b≠0,则需分类讨论:当a≠0时,它是一元二次方程;当a=0时,它是一元一次方程.-2-针对练习3:把方程(1-3x)(x+3)=2x2+1化为一元二次方程的一般形式,并写出二次项,二次项系数,一次项,一次项系数及常数项.答案:原方程化为一般形式是:5x2+8x-2=0(若写成-5x2-8x+2=0,则不符合人们的习惯),其中二次项是5x2,二次项系数是5,一次项是8x,一次项系数是8,常数项是-2(因为一元二次方程的一般形式是三个单项式的和,所以不能漏写单项式系数的负号).点击三:一元二次方程的根的定义的意义一元二次方程的根的定义可以当作性质定理使用,即若有实数m是一元二次方程ax2+bx+c=0(a≠0)的根,则m必然满足该方程,将m代入该方程,便有am2+bm+c=0(a≠0);定义也可以当作判定定理使用,即若有数m能使am2+bm+c=0(a≠0)成立,则m一定是ax2+bx+c=0的根.我们经常用定义法来解一些常规方法难以解决的问题,能收到事半功倍的效果.针对练习3:若m是方程x2+x-1=0的一个根,试求代数式m3+2m2+2009的值.答案:m3+2m2+2009=m3+m2+m2+2009=m(m2+m)+m2+2009=m+m2+2009=1+2009=2010.类型之一:一元二次方程的定义例1.关于x的方程2322mxxxmx是一元二次方程,m应满足什么条件?【解析】先把这个方程变为一般形式,只要二次项的系数不为0即可.【解答】由mx2-3x=x2-mx+2得到(m-1)x2+(m-3)x-2=0,所以m-1≠0,即m≠1.所以关于x的方程2322mxxxmx是一元二次方程,m应满足m≠1.【点评】要特别注意二次项系数a≠0这一条件,当a=0时,上面的方程就不是一元二次方程了.当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.类型之二:考查一元二次方程一般形式一元二次方程的一般形式是ax2+bx+c=0(a、b、c是已知数,a≠0),其中a叫做二次项系数,b叫做一次项系数c叫做常数项.只有将方程化为一般形式之后,才能确定它的二次项系数、一次项系数和常数项.这里特别要注意各项系数的符号。例2一元二次方程(x+1)2-x==3(x2-2)化成一般形式是.【解析】一元二次方程一般形式是ax2+bx+c=0(a≠0),对照一般形式可先去括号,再移项,合并同类项,得2x2-x-7=0。-3-【解答】2x2-x-7=0类型之三:考查一元二次方程的解使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解。例3已知关于x的一元二次方程(m-2)x2+3x+(m2-4)=0有一个解是0,求m的值。【解析】;因...