第18练三角函数的图象与性质[题型分析·高考展望]三角函数的图象与性质是高考中对三角函数部分考查的重点和热点,主要包括三个大的方面:三角函数图象的识别,三角函数的简单性质以及三角函数图象的平移、伸缩变换.考查题型既有选择题、填空题,也有解答题,难度一般为低中档,在二轮复习中应强化该部分的训练,争取对该类试题会做且不失分.常考题型精析题型一三角函数的图象例1(1)(2015·课标全国Ⅰ)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.,k∈ZB.,k∈ZC.,k∈ZD.,k∈Z(2)(2014·湖北)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-cost-sint,t∈[0,24).①求实验室这一天上午8时的温度;②求实验室这一天的最大温差.点评(1)画三角函数图象用“五点法”,由图象求函数解析式逆用“五点法”是比较好的方法.(2)对三角函数图象主要确定下列信息:①周期;②最值;③对称轴;④与坐标轴交点;⑤单调性;⑥与标准曲线的对应关系.变式训练1已知函数f(x)=2sin(ωx+φ)(其中ω>0,|φ|<)的最小正周期是π,且f(0)=,则()A.ω=,φ=B.ω=,φ=C.ω=2,φ=D.ω=2,φ=(2)已知函数f(x)=Asin(ωx+φ)(A>0,|φ|<,ω>0)的图象的一部分如图所示,则该函数的解析式为____________.题型二三角函数的简单性质例2设函数f(x)=-sin2ωx-sinωxcosωx(ω>0),且y=f(x)图象的一个对称中心到最近的对称轴的距离为.(1)求ω的值;(2)求f(x)在区间上的最大值和最小值.点评解决此类问题首先将已知函数式化为y=Asin(ωx+φ)+k(或y=Acos(ωx+φ)+k)的形式,再将ωx+φ看成θ,利用y=sinθ(或y=cosθ)的单调性、对称性等性质解决相关问题.变式训练2(2014·福建)已知函数f(x)=cosx(sinx+cosx)-.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.题型三三角函数图象的变换例3已知函数f(x)=10sincos+10cos2.(1)求函数f(x)的最小正周期;(2)将函数f(x)的图象向右平移个单位长度,再向下平移a(a>0)个单位长度后得到函数g(x)的图象,且函数g(x)的最大值为2.①求函数g(x)的解析式;②证明:存在无穷多个互不相同的正整数x0,使得g(x0)>0.点评对于三角函数图象变换问题,平移变换规则是“左加右减上加下减”并且在变换过程中只变换其中的自变量x,要把这个系数提取后再确定变换的单位和方向,当两个函数的名称不同时,首先要将函数名称统一,其次把ωx+φ写成ω(x+),最后确定平移的单位和方向.伸缩变换时注意叙述为“变为原来的”这个字眼,变换的倍数要根据横向和纵向,要加以区分.变式训练3(2014·山东)已知向量a=(m,cos2x),b=(sin2x,n),函数f(x)=a·b,且y=f(x)的图象过点(,)和点(,-2).(1)求m,n的值;(2)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.高考题型精练1.(2015·四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cosB.y=sinC.y=sin2x+cos2xD.y=sinx+cosx2.(2014·福建)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(-,0)对称3.已知函数f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分图象如图所示,则f()等于()A.-B.-1C.D.14.(2014·辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[-,]上单调递减D.在区间[-,]上单调递增5.将函数f(x)=-4sin的图象向右平移φ个单位,再将图象上每一点的横坐标缩短到原来的倍,所得图象关于直线x=对称,则φ的最小正值为()A.B.πC.πD.6.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则将y=f(x)的图象向右平移个单位后,得到的图象的解析式为()A.y=sin2xB.y=cos2xC.y=sinD.y=sin7.若函数f(x)=cos(2x+φ)的图象关于点成中心对称,且-<φ...