电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(江苏专用)高考数学一轮复习 第二章 函数概念与基本初等函数(Ⅰ)第6课 函数的奇偶性与周期性教师用书-人教版高三全册数学试题VIP免费

(江苏专用)高考数学一轮复习 第二章 函数概念与基本初等函数(Ⅰ)第6课 函数的奇偶性与周期性教师用书-人教版高三全册数学试题_第1页
1/8
(江苏专用)高考数学一轮复习 第二章 函数概念与基本初等函数(Ⅰ)第6课 函数的奇偶性与周期性教师用书-人教版高三全册数学试题_第2页
2/8
(江苏专用)高考数学一轮复习 第二章 函数概念与基本初等函数(Ⅰ)第6课 函数的奇偶性与周期性教师用书-人教版高三全册数学试题_第3页
3/8
第6课函数的奇偶性与周期性[最新考纲]内容要求ABC函数的奇偶性√函数的周期性√1.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数关于原点对称2.函数的周期性(1)周期函数:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作f(x)的最小正周期.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.()(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.()(3)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.()(4)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.()[答案](1)×(2)√(3)√(4)√2.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是________.[依题意b=0,且2a=-(a-1),∴b=0且a=,则a+b=.]3.(教材改编)已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1+x),则x<0时,f(x)=________.x(1-x)[当x<0时,则-x>0,∴f(-x)=(-x)(1-x).又f(x)为奇函数,∴f(-x)=-f(x)=(-x)(1-x),∴f(x)=x(1-x).]4.下列函数中,①y=;②y=|sinx|;③y=cosx;④y=ex-e-x为奇函数的是________.(填函数序号)1④[①中函数的定义域为[0,+∞),其不关于原点对称,故①不是奇函数,②③是偶函数,④是奇函数.]5.(2016·江苏高考)设f(x)是定义在R上且周期为2的函数,在区间[-1,1)上,f(x)=其中a∈R.若f=f,则f(5a)的值是________.-[因为函数f(x)的周期为2,结合在[-1,1)上f(x)的解析式,得f=f=f=-+a,f=f=f==.由f=f,得-+a=,解得a=.所以f(5a)=f(3)=f(4-1)=f(-1)=-1+=-.]函数奇偶性的判断判断下列函数的奇偶性:(1)f(x)=x3-2x;(2)f(x)=(x+1);(3)f(x)=[解](1)定义域为R,关于原点对称,又f(-x)=(-x)3-2(-x)=-x3+2x=-(x3-2x)=-f(x).∴该函数为奇函数.(2)由≥0可得函数的定义域为(-1,1]. 函数定义域不关于原点对称,∴函数为非奇非偶函数.(3)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x>0时,f(x)=x2+x,则当x<0时,-x>0,故f(-x)=x2-x=f(x);当x<0时,f(x)=x2-x,则当x>0时,-x<0,故f(-x)=x2+x=f(x),故原函数是偶函数.[规律方法]1.利用定义判断函数奇偶性的步骤:2.判断分段函数的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性;也可以利用函数的图象进行判断.[变式训练1](1)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是________.(填序号)①f(x)g(x)是偶函数;②|f(x)|g(x)是奇函数;2③f(x)|g(x)|是奇函数;④|f(x)g(x)|是奇函数.(2)判断函数f(x)=+的奇偶性.(1)③[①:令h(x)=f(x)·g(x),则h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(x),∴h(x)是奇函数,①错.②:令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x)=h(x),∴h(x)是偶函数,②错.③:令h(x)=f(x)|g(x)|,则h(-x)=f(-x)|g(-x)|=-f(x)|g(x)|=-h(x),∴h(x)是奇函数,③正确.④:令h(x)=|f(x)·g(x)|,则h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x),∴h(x)是偶函数,④错.](2)由得x2=3,∴x=±,即函数f(x)的定义域为{-,},从而f(x)=+=0.因此f(-x)=-f(x)且f(-x)=f(x),∴函数f(x)既是奇函数又是偶函数.函数奇偶性的应用(1)若函数f(x)=xln(x+)为偶函数,则a=________.【导学号:62172030】(2)已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-4x,则f(x)=________.(1)1(2)[(1) f(x)为偶函...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(江苏专用)高考数学一轮复习 第二章 函数概念与基本初等函数(Ⅰ)第6课 函数的奇偶性与周期性教师用书-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部