专题14解析几何(2)解析几何大题:10年10考,每年1题.命题的特点:2011-2015年和2019年的载体都是圆,利用圆作为载体,更利于考查数形结合,圆承担的使命就是“形”,尽量不要对圆像椭圆一样运算,2016-2018年的载体连续3年都是抛物线,2010年的载体是椭圆.1.(2019年)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.【解析】(1) ⊙M过点A,B且A在直线x+y=0上,∴点M在线段AB的中垂线x﹣y=0上,设⊙M的方程为:(x﹣a)2+(y﹣a)2=R2(R>0),则圆心M(a,a)到直线x+y=0的距离d=,又|AB|=4,∴在Rt△OMB中,d2+(|AB|)2=R2,即①又 ⊙M与x=﹣2相切,∴|a+2|=R②由①②解得或,∴⊙M的半径为2或6;(2) 线段AB为⊙M的一条弦O是弦AB的中点,∴圆心M在线段AB的中垂线上,设点M的坐标为(x,y),则|OM|2+|OA|2=|MA|2, ⊙M与直线x+2=0相切,∴|MA|=|x+2|,∴|x+2|2=|OM|2+|OA|2=x2+y2+4,∴y2=4x,∴M的轨迹是以F(1,0)为焦点x=﹣1为准线的抛物线,∴|MA|﹣|MP|=|x+2|﹣|MP|=|x+1|﹣|MP|+1=|MF|﹣|MP|+1,∴当|MA|﹣|MP|为定值时,则点P与点F重合,即P的坐标为(1,0),∴存在定点P(1,0)使得当A运动时,|MA|﹣|MP|为定值.2.(2018年)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.【解析】(1)当l与x轴垂直时,x=2,代入抛物线解得y=±2,∴M(2,2)或M(2,﹣2),直线BM的方程:y=x+1,或:y=﹣x﹣1.(2)证明:设直线l的方程为l:x=ty+2,M(x1,y1),N(x2,y2),联立直线l与抛物线方程得,消x得y2﹣2ty﹣4=0,即y1+y2=2t,y1y2=﹣4,则有kBN+kBM=+===0,∴直线BN与BM的倾斜角互补,∴∠ABM=∠ABN.3.(2017年)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.【解析】(1)设A(x1,),B(x2,)为曲线C:y=上两点,则直线AB的斜率为k==(x1+x2)=×4=1;(2)设直线AB的方程为y=x+t,代入曲线C:y=,可得x2﹣4x﹣4t=0,即有x1+x2=4,x1x2=﹣4t,再由y=的导数为y′=x,设M(m,),可得M处切线的斜率为m,由C在M处的切线与直线AB平行,可得m=1,解得m=2,即M(2,1),由AM⊥BM可得,kAM•kBM=﹣1,即为=﹣1,化为x1x2+2(x1+x2)+20=0,即为﹣4t+8+20=0,解得t=7.则直线AB的方程为y=x+7.4.(2016年)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(1)求;(2)除H以外,直线MH与C是否有其它公共点?说明理由.【解析】(1)将直线l与抛物线方程联立,解得P(,t), M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(2)由(1)知kMH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.5.(2015年)已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.(1)求k的取值范围;(2)若=12,其中O为坐标原点,求|MN|.【解析】(1)由题意可得,直线l的斜率存在,设过点A(0,1)的直线方程为y=kx+1,即kx﹣y+1=0.由已知可得圆C的圆心C的坐标(2,3),半径R=1.故由<1,故当<k<,过点A(0,1)的直线与圆C:(x﹣2)2+(y﹣3)2=1相交于M,N两点.(2)设M(x1,y1);N(x2,y2),由题意可得,经过点M、N、A的直线方程为y=kx+1,代入圆C的方程(x﹣2)2+(y﹣3)2=1,可得(1+k2)x2﹣4(k+1)x+7=0,∴x1+x2=,x1•x2=,∴y1•y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1=•k2+k•+1=,由=x1•x2+y1•y2==12,解得k=1,故直线l的方程为y=x+1,即x﹣y+1...