你能登上月球吗?能?!只要你把你手上的纸对折38次我就能沿着它登上月球。哇…M=1+2+4+8+…+2(页)37列式:数数数数⑤数数数数数数数数数数数数数数数列是高中代数的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位,是高考数学的主要考察内容之一,试题难度分布幅度大,既有容易的基本题和难度适中的小综合题,也有综合性较强对能力要求较高的难题。大多数是一道选择或填空题,一道解答题。解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题经常是综合题,把数列知识和指数函数、对数函数和不等式的知识综合起来,探索性问题是高考的热点,常在数列解答题中出现。应用问题有时也要用到数列的知识。试题特点qaann1dnaan)1(111nnqaadmnaamn)(mnmnqaa2)(baAabG22)1(2)(11dnnnaaanSnn1111)1(111qnaqqqaaqqaSnnnm+n=p+qnmpqaaaanmpqaaaamnpq2m+n2nmpaaap22nmpaaamnp一、知识回顾daann1kkkkkSSSSS232,,kkkkkSSSSS232,,仍成等差仍成等比1211nSnSSannn等差数列等比数列定义通项通项推广中项性质求和公式关系式nnSa、适用所有数列Ⅰ、等差、等比数列的设法及应用1.三个数成等差数列可设为daadadadaa,,;2,,或者,yyxx,2,aqaqa,,2.三个数成等比数列,则这三个数可设为,也可以设为.,,2aqaqa例1(1).已知三个数成等差数列,其和为15,其平方和为83,求此三个数.析:设这三个数为dxxdx,,则83)()(15)()(222dxxdxdxxdx∴所求三个数分别为3,5,7解得x=5,d=或7,5,3.±2.二、知识应用根据具体问题的不同特点而选择不同设法。例1(2):互不相等的三个数之积为,这三个数适当排列后可成为等比数列也可排成等差数列,求这三数排成的等差数列.8设这三个数为,则aqaqa,,8aqaqa即:283aa(1)若qq2,22是的等差中项,则422qq即:0122qq1q与已知三数不等矛盾(2)若qq2,22为的等差中项,则qq211即:0122qq21q三个数为2,1,44,1,2或(3)若2,22qq为的等差中项,则qq21即:022qq2q三个数为2,1,44,1,2或综上:这三数排成的等差数列为:4,1,22,1,4或Ⅱ、运用等差、等比数列的性质例2(1)已知等差数列满足,则()}{na010121aaa0A.1011aa0B.1002aa51D.51a0C.993aa130A.170B.210C.260D.(3)已知在等差数列{an}的前n项中,前四项之和为21,后四项之和为67,前n项之和为286,试求数列的项数n.214321aaaa析:67321nnnnaaaa2862)(1nnaanS22467211naaC(2)已知等差数列前项和为30,前项和为100,则前项和为()}{namm2m3C26n考题剖析已知{an}为等差数列,a2+a8=12,,则a5等于()(A)4(B)5(C)6(D)7解:由已知,由等差数列的性质,有a2+a8=2a5,所以,a5=6,选(C)。[点评]本题直接利用等差数列的性质,由等差中项可得,属容易题。例3.等差数列{an}中,a1<0,S9=S12,该数列前多少项的和最小?分析:如果等差数列{an}由负数递增到正数,或者由正数递减到负数,那么前n项和Sn有如下性质:100nnnaSa是最小值1.当a1<0,d>0时,2.当a1>0,d<0时,100nnnaSa是最大值思路1:寻求通项∴n取10或11时Sn取最小值111199(91)1212(121)22adad1110da即:da30311011)10)(1(111naanaan010a易知011a012a由于01aⅢ、等差数列的最值问题例3.等差数列{an}中,a1<0,S9=S12,该数列前多少项的和最小?分析:等差数列{an}的通项an是关于n的一次式,前项和Sn是关于n的二次式(缺常数项).求等差数列的前n项和Sn的最大最小值可用解决二次函数的最值问题的方法.思路2:从函数的角度来分析数列问题.设等差数列{an}的公差为d,则由题意得:111199(91)1212(121)22adad110ad111(1)10(1)22nSnannddnnnd...