低压气体直流击穿特性实验论文班级:电信1302姓名:李彤学号:201383081摘要:本次实验使用低气压直流辉光放电发生装置,通过观察二极管压降判断气体击穿,测量了氩气在电极间隙为8.40cm,气压在10-100Pa内均匀分布的气体直流击穿电压和气压在10-4Pa内均匀分布的气体击穿电压数据(每组数据含三次偏差不大于5%击穿电压测量值),绘制出了氩气的帕邢曲线,并在曲线上找出了最佳击穿条件和最小击穿电压。从实验中进一步认识了低气压气体直流击穿现象,进一步掌握了汤森击穿理论和帕邢曲线的物理意义。关键词:低气压;直流击穿;帕邢曲线一、实验目的与原理1.实验目的(1)了解真空条件的实现和低气压获得方法,掌握测量击穿电压的电路技术。(2)认识低气压气体直流击穿现象,研究放电条件与气体击穿电压的关系,体会探索物理规律的实验研究过程。(3)掌握帕邢定律和帕邢曲线。2.实验原理(1)低气压气体击穿现象常态下气体是绝缘体,没有载流能力。如果采用一定的激励方式,使气体中性粒子发生电离而形成正负带电粒子,并且电离数量达到一定比例,气体就具有了导电能力。如果同时施加电场,气体中的带电粒子就会定向迁移形成电流,即发生气体放电现象。低压气体放电分为自持放电和非自持放电两种模式。非自持放电是指存在外在电离因素才能维持的放电,例如:用紫外光或者放射线照射气体,使气体电离而具有导电能力。如果撤去外电离因素,带电粒子就会很快复合消失,放电便熄灭。自持放电是指没有外电离因素,能够在导电电场的支持下自主维持下去的放电过程。在外电离因素支持下,气体中会存在一定量的背景电离过程,因而含有一定浓度的带电粒子,可以在外加电场作用下形成导电电流。随着电场的增加,电流强度逐渐增加,当电场强至一定值,气体中的放电电流会突然迅速增加,即使撤去外电离源,放电仍能维持,即转化成了自持放电,这种从非自持放电到自持放电的过度现象,即气体的击穿。气体发生击穿所需要的电场强度称为击穿场强,相应的放电电压称为击穿电压。(2)汤森(Townsend)放电理论对气体从非自持放电到自持放电的整个过程及现象,1903年前后,汤森(Townsend)首先进行了详细观察分析研究,并提出了汤森(Townsend)放电和击穿机制,建立了放电理论,这一类服从汤森(Townsend)放电机制的放电过程被总称为汤森(Townsend)放电。汤森(Townsend)机制认为:气体放电的发生是气体分子或原子被电离产生电子和离子的结果。在外加电场作用下,电离产生的电子可以被加速,获得能量的电子又可以增强气体的电离,从而发生雪崩电离产生电子倍增过程,而离子在获得能量后可以轰击阴极产生二次电子发射以补足电子的损耗。气体击穿就是二次电子发射和电子雪崩电离共同发生而产生的一种现象。汤森(Townsend)引入了过程和过程描述电子雪崩电离和二次电子发射。根据汤森(Townsend)理论,气体击穿过程包括以下步骤:由于宇宙射线的作用,气体中总存在一定量电离事件,即背景电离。当外加电场较小时,只是背景电离能够产生载流子,并被外加电场驱动而迁移,形成电流,电流密度很低并且空间分布均匀,电流强度随电压线性增加,并逐渐趋于饱和。这是一种暗放电,因为带电粒子的定向运动没有引起电离和发光过程,放电区域不发光。随着电场的继续增加,电子逐渐获得了更高能量从而发生电子碰撞电离使电子数量进一步提高,导致电流迅速增长。同时,电子碰撞过程也产生原子分子的激发而发光,放电便不再是暗放电。光子照射阴极表面发生光电效应,产生阴极电子发射,使得电子密度进一步增加。电离过程也产生离子,并向阴极加速移动。随着电场增强,离子撞击阴极的能量也增加。当电场达到足够强时,离子轰击可在阴极诱导二次电子发射,这一过程称为过程。过程极大提高了阴极发射电子能力。若阴极发射足够强,气体放电便自持而发生击穿。由此,建立起汤森(Townsend)击穿条件,如下:1+γ=γeαd(34-1)其中和是过程和过程的汤森(Townsend)系数,也称为汤森(Townsend)第一电离系数和第三电离系数,d是放电电极间隙。(3)帕邢(Paschen)定律与帕邢(Paschen...