第一章静力学的基本概念受力图2-1解:由解析法,23cos80RXFXPPN12sin140RYFYPPN故:22161.2RRXRYFFFN1(,)arccos2944RYRRFFPF2-2解:即求此力系的合力,沿OB建立x坐标,由解析法,有123cos45cos453RXFXPPPKN13sin45sin450RYFYPP故:223RRXRYFFFKN方向沿OB。2-3解:所有杆件均为二力杆件,受力沿直杆轴线。(a)由平衡方程有:0Xsin300ACABFF0Ycos300ACFW0.577ABFW(拉力)1.155ACFW(压力)(b)由平衡方程有:0Xcos700ACABFF0Ysin700ABFW1.064ABFW(拉力)0.364ACFW(压力)(c)由平衡方程有:0Xcos60cos300ACABFF0Ysin30sin600ABACFFW0.5ABFW(拉力)0.866ACFW(压力)(d)由平衡方程有:0Xsin30sin300ABACFF0Ycos30cos300ABACFFW0.577ABFW(拉力)0.577ACFW(拉力)2-4解:(a)受力分析如图所示:由0x224cos45042RAFP15.8RAFKN由0Y222sin45042RARBFFP7.1RBFKN(b)解:受力分析如图所示:由0x3cos45cos45010RARBFFP0Y1sin45sin45010RARBFFP联立上二式,得:22.410RARBFKNFKN2-5解:几何法:系统受力如图所示三力汇交于点D,其封闭的力三角形如图示所以:5RAFKN(压力)5RBFKN(与X轴正向夹150度)2-6解:受力如图所示:已知,1RFG,2ACFG由0xcos0ACrFF12cosGG由0Ysin0ACNFFW22221sinNFWGWGG2-7解:受力分析如图所示,取左半部分为研究对象由0xcos45cos450RACBPFF0Ysin45sin450CBRAFF联立后,解得:0.707RAFP0.707RBFP由二力平衡定理0.707RBCBCBFFFP2-8解:杆AB,AC均为二力杆,取A点平衡由0xcos60cos300ACABFFW0Ysin30sin600ABACFFW联立上二式,解得:7.32ABFKN(受压)27.3ACFKN(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D,B点分别列平衡方程(1)取D点,列平衡方程由0xsincos0DBTW0DBTWctg(2)取B点列平衡方程:由0Ysincos0BDTT230BDTTctgWctgKN2-10解:取B为研究对象:由0Ysin0BCFPsinBCPF取C为研究对象:由0xcossinsin0BCDCCEFFF由0Ysincoscos0BCDCCEFFF联立上二式,且有BCBCFF解得:2cos12sincosCEPF取E为研究对象:由0Ycos0NHCEFFCECEFF故有:22cos1cos2sincos2sinNHPPF2-11解:取A点平衡:0xsin75sin750ABADFF0Ycos75cos750ABADFFP联立后可得:2cos75ADABPFF取D点平衡,取如图坐标系:0xcos5cos800ADNDFFcos5cos80NDADFF由对称性及ADADFFcos5cos5222166.2cos80cos802cos75NNDADPFFFKN2-12解:整体受力交于O点,列O点平衡由0xcoscos300RADCFFP0Ysinsin300RAFP联立上二式得:2.92RAFKN1.33DCFKN(压力)列C点平衡0x405DCACFF0Y305BCACFF联立上二式得:1.67ACFKN(拉力)1.0BCFKN(压力)2-13解:(1)取DEH部分,对H点列平衡0x205RDREFF0Y105RDFQ联立方程后解得:5RDFQ2REFQ(2)取ABCE部分,对C点列平衡0xcos450RERAFF0Ysin450RBRAFFP且REREFF联立上面各式得:22RAFQ2RBFQP(3)取BCE部分。根据平面汇交力系平衡的几何条件。2222222284RCRERBFFFQQPQPQP2-14解:(1)对A球列平衡方程0xcossin0ABNAFF(1)0Ycossin20NAABFFP(2)(2)对B球列平衡方程0xcoscos0NBABFF(3)0Ysinsin0NBABFFP(4)且有:NBNBFF(5)把(5)代入(3),(4)由(1),(2...