三角形“四心”的向量性质及其应用三角形“四心”的概念介绍(1)重心—三条中线的交点:重心将中线长度分成2:1;(2)外心—三边中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等;(3)垂心—三条高线的交点:高线与对应边垂直;(4)内心—三条内角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等.工具:O为ABC△内一点,则有:0OCSOBSOASOABOCAOBC证明:延长AO交BC于D,如图必有:||||OAODSSSOABOCAOBC,||||BCBDSSSOABOCAOAB,||||BCCDSSSOABOCAOCA;---(*)由DOA,,共线,得:0||||ODODOAOA进而得:0||||ODOAOAOD----------------①由CDB,,共线,得:OCBCBDOBBCCDOD||||||||----------②由①②得:OAOAOD||||0||||||||OCBCBDOBBCCD代入(*)结论得OASSSOABOCAOBCOBSSSOABOCAOCA0OCSSSOABOCAOAB消去分母得:0OCSOBSOASOABOCAOBC证毕.另证:作ACOGABOH//,//,如图:AGOH为平行四边形;由OCSOBSOASOABOCAOBC)()(ACOASABOASOASOABOCAOBCACSABSOASOABOCAABC)(ACSSABSSOASABCOABABCOCAABC)(ACACAHABABAGOASABC)(AHAGOASABC0)(AOOASABC.反方向思考:设O在ABC的内部,若有正实数321,,满足:0321OCOBOA,ABCODABCODHFEG必有:AOBCOABOCSSS::::321.证明:作:OAOA1',OBOB2',OCOC3'则'OA'OB0'OC,则O为'''CBA的重心,则:''''''OBAOACOCBSSS.设为S又SSSSSSSSSAOBOBACOAOACBOCOCB2!''13''32''从而得:AOBCOABOCSSSSSS::::::211332321.验证式思考:先证引理:若ba,不共线,对p,有0pa且0pb,必有.0p证明:若.0p必有pa且pb,得ba//,与题设矛盾,故必有.0p再证:设BOC,COA,则2AOB;由)(OCSOBSOASOAOABOCAOBCOCOASOBOASOASOABOCAOBC2cos)2sin(21)2cos(sin21sin212OCOAOBOAOBOAOAOCOAOCOB]cos)sin()cos(sin[sin212OCOBOA)]}(sin[{sin212OCOBOA0)]sin([sin212OCOBOA;有对称性知:0)(OCSOBSOASOBOABOCAOBC,又OA,OB不共线,故:必有0OCSOBSOASOABOCAOBC成立.一、三角形的重心的向量表示及应用知识:G是ABC△的重心)(31ACABAG0GCGBGA)(31OCOBOAOG(O为该平面上任意一点)略证:1:1:1::GABGCAGBCSSS,得:0GCGBGA.变式:已知DEF,,分别为ABC△的边BCACAB,,的中点.则0CFBEAD.二、三角形的外心的向量表示及应用知识:O是ABC△的外心222||||||OCOBOAOCOBOA02sin2sin2sinOCCOBBOAA略证:CBASSSOABOCAOBC2sin:2sin:2sin::,得:02sin2sin2sinOCCOBBOAA'A'B'COABCABCO常用结论:O是ABC△的外心.2||;2||22ACAOACABAOAB三、三角形的垂心的向量表示及应用知识:H是ABC△的垂心HAHCHCHBHBHA222222||||||||||||ABHCCAHBBCHA0tantantanHCCHBBHAA略证:CBASSSHABHCAHBCtan:tan:tan::,得:0tantantanHCCHBBHAA扩展:若O是ABC△的外心,点H满足:OCOBOAOH,则H是ABC△的垂心.证明:如图:BE为直径,H为垂心,O为外心,D为BC中点;有:为平行四边形AHCEEACHABEAABCHECAHBCECBCAH////进而得到:,//ECAH且ECAH,即:ECAH;又易知:OCOBODEC2;故:OAOHOCOBAH,即:OCOBOAOH.又:OGOCOBOA3(G为重心),故:OGOH3;故:得到欧拉线:ABC△的外心O,重心G,垂心H三点共线(欧拉线),且GHOG21.证毕.四、三角形的内心的向量表示及应用知识:I是ABC△的内心0||||0||||0||||CBCBCACACIBCBCBABABIACACABABAI0||||0||||0||||CACABCBCCIBABACBCBBIACACBABAAI0ICcIBbIAacbaOCcOBbOAaOI0sinsinsinICCIBBIAA注:式子中|||,||,|ABcCAbBCa,O为任一点.略证:CBAcbaSSSIABICAIBCsin:sin:sin::::,得之.五.欧拉线:ABC△的外心O,重心G,垂心H三点共线(欧拉线),且GHOG21.(前已证)测试题一.选择题ABDOHCE1.O是ABC所在平面上一定点,动点P满足)(ACABOAOP,,0,则点P的轨迹一定通过ABC的()A.外心B.内心C.重心D.垂心2.(03全国理4)O是ABC所在平面上一定点,动点P满足)(ACACABABOAOP,,0,则点P的轨迹一定通过ABC的()A.外心B.内心C.重心D.垂心3.O是ABC所在平面上一定点,动点P满足)coscos(CACACBABABOAOP,R,则点P的轨迹一定通过ABC的()A.外心B.内心C.重心D.垂心4.O是ABC所在平面上一定点,动点P满足)sinsin(CACACBABABOAOP,,0,则点P的轨迹一定通过ABC的()A.外心B....